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Abstract

We investigate the transition between limiting similarity and coexistence of a continuum in
the competitive Lotka—Volterra model. It is known that there exist exceptional cases in which,
contrary to the limiting similarity expectation, all phenotypes coexist along a trait axis. Earlier
studies established that the distance between surviving phenotypes is in the magnitude of
the niche width 26 provided that the carrying capacity curve differs from the exceptional one
significantly enough. In this paper we studied the outcome of competition for small perturbations
of the exceptional (Gaussian) carrying capacity. We found that the average distance between the
surviving phenotypes goes to zero when the perturbation vanishes. The number of coexisting
species in equilibrium is proportional to the negative logarithm of the perturbation. Nevertheless,
the niche width provides a good order of magnitude for the distance between survivors if the
perturbations are larger than 10%. Therefore, we conclude that limiting similarity is a good
framework of biological thinking despite the lack of an absolute lower bound of similarity.
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1 Introduction

The species packing problem is one of the oldest issues of mathematical ecology. Based on the
investigation of the Lotka—Volterra competition model, MacArthur and Levins (1967) proposed that
species should not be too similar if they are to coexist (limiting similarity). The minimal difference
was assumed to be related to the niche width 20 of the species, i.e. to the width of their resource
utilization function. This insight turned out to be useful in interpreting empirical data in simple
cases of resource competition (Schluter 1982, Grant and Schluter 1984, Grant 1999).

Unfortunately, the naive version of limiting similarity was not confirmed by further theoretical
studies. May and MacArthur (1972), May (1973) found that the minimal trait difference can be
arbitrarily small if the carrying capacities are properly tuned. Even worse, Roughgarden (1979)
(p. 534-536) demonstrated that even a continuum of phenotypes may coexist in the Lotka—Volterra
model. These results were seen by many as the end of the road to limiting similarity (Rosenzweig
1995, Maynard Smith and Szathmdéry 1995).



However, Abrams (1983) proposed a different viewpoint. As there is no such thing as an absolute
lower limit of allowed similarity, one should instead study the relationship between similarity and the
likelihood of coexistence. In the competitive Lotka-Volterra model it is easy to see that increasing
similarity shrinks the parameter range allowing for coexistence (May 1973, Vandermeer 1975). This
relationship was formally proven in a model-independent way by Meszéna et al. (2006). Coexistence
of similars is not impossible, but it is sensitive to external perturbations and is therefore improbable.
This way, the idea of limiting similarity can be rescued as a basis of biological thinking, despite the
lack of an absolute lower bound of similarity.

In line with the perturbation approach of Meszéna et al. (2006), Gyllenberg and Meszéna (2005)
demonstrated that continuous coexistence, like the one in Roughgarden (1979)’s model, is always
structurally unstable, i.e. it can be destroyed by an arbitrarily small perturbation. This result is also
independent of the specific model (see Sasaki and Ellner 1995, Sasaki 1997, for earlier, related
studies).

With this background, Szabé and Meszéna (20006) reinvestigated the Lotka—Volterra competition
model and numerically reproduced the cases of continuous coexistence as well as limiting similarity.
Provided that the competition function is a Gaussian, the Gaussian carrying capacity represents the
special situation allowing coexistence on the whole continuum. Any significant departure from the
Gaussian shape of the carrying capacity resulted in a clear discretization of the coexisting types.
With reassuring resemblance to the original idea of MacArthur and Levins (1967), the typical trait
difference between the neighbouring types is in the order of magnitude of, and is proportional to,
the niche width 2.

Here we continue this investigation by studying the transition between continuous coexistence
and limiting similarity. We know from the analytical result of Gyllenberg and Meszéna (2005) that
an arbitrarily small perturbation of the continuous case results in a discrete distribution. Can we
also conclude that the 20 prediction for the neighbour-distance is also applicable after an arbitrarily
small departure from the continuous case? Or will the distance increase gradually from zero? In the
latter case, how much perturbation is needed to ensure the validity of the classical picture?

2 Model definition

Following MacArthur and Levins (1967), the Lotka—Volterra model describing competition for
a resource continuum is investigated. Each species is characterized by a single continuous trait
describing the species’ resource optimum.

For L different species, the population dynamics is specified as
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where n;(t) and x; are the density and the phenotype of the ith species, respectively. It reads as

dnEl);,t) = (K(x) — /a(x,y)n(y,t)dy) n(x,t) =0 (2)
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for a continuum of phenotypes. (Note that the concepts of phenotype and species are equivalent in a
model of clonal inheritance.)
The competition function is specified to be a Gaussian of the trait difference:
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As a(x,x) = 1 for all x, the equilibrium population size of a species, when alone, is K(x). Therefore,
K (x) is referred to as the carrying capacity function. It is assumed to have the Gaussian form
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as the reference case. Then for @ > o the continuous distribution
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of the phenotypes satisfies the equilibrium equation
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for the continuous case (Roughgarden 1979, Szab6 and Meszéna 2006).
We will modify the reference form of the carrying capacity by a perturbing function f(x) as

2
K(x) = exp (—W) e, ™
where the parameter € is used to tune the strength of perturbation. As proven in Gyllenberg and
Meszéna (2005), for an appropriate choice of the perturbing function, an arbitrarily small € destroys
the possibility of the coexistence of a whole continuum of phenotypes.

For the simulations the interval x € [—1, 1] was divided into 1001 partitions of equal length.
We integrated the so discretized version of Eq. (2) by the Euler method with Af = 1.6. Our initial
conditions at t = 0 were n(x,7) = 0.01 for all x € [—1, 1]. The simulations were terminated when
the number of coexisting species equilibrated.

In order to be able to determine more precisely when equilibrium was reached, our program
had two other features not inherent to solving the differential equations. First, every species whose
density decreased below a critical level was considered dead, i.e. its density was numerically set to
zero. In our simulations this threshold was n < 107%. Second, we recorded the number of phenotypes
(out of L =1001) with nonzero density every 1000 iterations (a typical run of the program consisted
of a few million cycles, or even more for very small perturbations). We could get a good guess on
how far we were from reaching equilibrium, since the convergence of the number of phenotypes
with nonzero density (that is, the number of surviving species) to a certain value marked the point
from where nothing interesting would happen. By watching this convergence diagram we were able
to stop the running of the program when it became necessary.



3 Results
The simplest choice for the perturbation function f(x) is

flx)=46(x) (8)

where S(x) is a kind of characteristic function: it is equal to 1 at x = 0, zero elsewhere. It can be
considered as a small & limit of exp(—x?/(2£2)) and should not be confused with the Dirac delta
function which has an infinite value at x = O (this characteristic function is very convenient for
numerical investigations, but one should be careful about a naive analytical application to Eq. (2) as
the & — 0 limit may lead to problems).
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Figure 1: Perturbation with a single peak at x = 0. Simulation parameters here and in the other figures,
if not indicated otherwise: @ = 0.3, ¢ = 0.08. Left: Equilibrium solution with perturbation amplitude
€ = 0.1; the curve represents the carrying capacity K(x). Right: Number of survivors as a function of €.
Dots are simulation results; the curve shows the best fit with the function m = @ — 8 In €. Fitting parameters:
oo=11.5+£0.2, B =1.08£0.03.

The left pane of Fig. 1 presents the equilibrium solution with this type of perturbation. One
can observe the discreteness of species distribution, as predicted by the theory. A very simple
mechanism, which is easy to follow by observing the simulations, leads to this discretization.
Without the perturbation, the whole range of phenotypes could coexists. However, the central peak
of K gives a distinct advantage of the phenotype at x = 0. Increased density of this population results
in heightened competition against the similar types. Therefore, species die out in a phenotype range
around the species preferred by the perturbation.

The right pane shows the dependence of the number of surviving phenotypes m on the perturba-
tion amplitude €. It can be fitted very well with the function

m=o—PBlne. 9

One may observe that m diverges for small perturbations, just as it should. However, for € > 0.1 the
dependence is weak because the logarithm function barely changes at all in that regime. The number
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of coexisting species is essentially independent of the perturbation, provided that the perturbation
(i.e. €) is not very small. This €-dependence is also obviously linear when m is considered as a
function of In€. The two parameters ¢ and f therefore correspond to the parameters of a linear fit.
Thus it was convenient to determine these parameters in terms of the above linearity.

As the discretization proceeds outward from the central peak, we used the following trick for
counting the coexisting species. Instead of waiting until a perfect equilibrium was reached along
the whole interval, the simulation was run until the first few survivors around the perturbation peak
were built up. Then, we measured the distance in phenotype between the survivor at the point of
the perturbation and its nearest neighbour and divided the total phenotype interval [—1, 1] by this
distance to obtain the number of surviving phenotypes. Since the survivors are more or less evenly
spaced, as one can check on the left pane of the Figure, this method provides just as good results as
the straightforward peak counting when € goes to zero.

To check whether this result is an artefact of the non-smooth nature of the perturbing function,
we repeated the simulations with

f(x) = exp(—x?/(28%)) (10)

using a finite £ that was smaller than o. The results are exactly the same as before (Fig. 2). That is,
a narrow peak of perturbation destroys continuous coexistence just like the infinitely narrow one.
Note that the linear nature of the equilibrium equation (7) implies that continuous coexistence exists
for & > o with the phenotype-distribution
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Figure 2: A similar perturbation with a smooth, Gaussian peak of width & = 0.03 at x = 0. The left pane
shows the equilibrium distribution with € = 0.1, the right pane shows the £-dependence of the number of
species in equilibrium. Fitting parameters: & = 11.5+0.2, B = 1.08 +0.03, which are the same as on Fig. 1.



This behavior becomes understandable when one consider that the equilibrium distribution
of continuous coexistence is to be calculated from the equilibrium equation (7) by deconvolution
(Gyllenberg and Meszéna 2005). That procedure breaks down when the carrying capacity function
has higher significant Fourier components than the competition kernel does. That is, discretization
is related to the changes of the carrying capacity function that are sharper than of the competition
kernel. While we did not investigate this in detail, it seems that coexistence shrinks immediately to
the equivalent of & = 0 when & becomes less than ©.
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Figure 3: Perturbation with an asymmetrically located peak at x = —0.5. Again, the left pane is the
equilibrium distribution (€ = 0.5), the right pane shows the e-dependence. Fitting parameters: @ = 8.9 4+0.2,
B =1.20+0.03.

A similar analysis to the single-peak case with similar results is presented in Fig. 3 for an
asymmetrically located perturbing peak, i.e. for

f(x) =6(x—xo). (12)
Here the same species counting method was applied as before with using the average of the distances
to the two nearest neighbours. Looking at Fig. 3 one may think this method would not work here
since the distance between the “privileged” phenotype and its nearest neighbours is obviously greater
than the rest of the distances. That is true, but only because the perturbation in this case is very large
(it is in the order of magnitude of the original carrying capacity). For small perturbations (¢ < 0.1)
the distances equalize. Therefore this method is actually no worse than the one discussed in the
previous case.

Fig. 4 represents the results for the two-peaked perturbation

f(x) = 8(x+x0) + 6(x—xp). (13)

In this case we have more than one “seed” of discretization which, therefore, proceeds much faster.
The species were directly counted after full convergence.

As we learned above, discretization is related to the sharp changes of the carrying capacity
function, i.e. to the high Fourier components of the perturbation. To get a balanced picture it is
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Figure 4: As before, but with a double-peaked perturbation at x = +0.2. The example on the left pane has
€ = 0.1. Fitting parameters: o = 15.86 £0.19, B = 0.738 +0.027.

necessary to study a perturbation that is somehow mid-way between being smooth and rough. From
this reason, following Szabd and Meszéna (2006), we study a fractal-like perturbing function:

x—x0)? M
f(x) =exp <_(2a)20)> : <Zj_’7 cos(jx+ (pj)> . (14)

j=1

Here n = 1.5 is the critical exponent determining the mixing ration of the different Fourier compo-
nents. The ;s are random phases and M = 1001 is the number of partitions of the phenotype axis
(Fig. 5).
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Figure 5: Perturbation with the fractal function given by Eq. (14), n = 1.5. The value of € on the left is 0.01.
Fitting parameters: oo = 18.6+0.9, 3 =2.4+0.1.



The qualitative conclusions are the same in all cases. The surviving species are distanced roughly
according to the niche-width except when we are very close to the structurally unstable situation

where € = 0.

Reaching equilibrium takes longer and longer time with decreasing perturbation. Could it be
that the higher number of survivors for smaller perturbation is just an artifact of not waiting long
enough to allow competitive exclusion to proceed? In Fig. 6 we present a comparison between two
equilibrated population distributions for different perturbation amplitudes. Here the perturbation
function

20
fx)=Y 8(x—1+0.1j) (15)
j=1

was applied. The results demonstrate clearly that extra species are present in equilibrium for small
perturbations.
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Figure 6: Equilibrium distribution for the multi-peaked perturbation of Eq. (15) with different perturbation
amplitudes. Left: € = 0.1, right: € = 107>, Note the extra equilibrated species for very small perturbations.

The fitting parameter & gives the number of coexisting populations for € = 1. It also provides
a reasonable approximation of m for any value of € above 0.1. The average distance between the
nearest neighbours equals to Ax = 2/a. The dependence of the so-calculated Ax on the ¢ parameter
is presented on Fig. 7. One can observe strict proportionality between the two variables. The value
0 =2 of the proportionality constant would correspond to a precise 20 rule. While the real § differs
from this value, its order of magnitude allow us to consider the species separation by niche width
as a good rule of thumb. Note that § becomes smaller for the fractal case, presumably because
smoother perturbations allow for denser packing.

4 Discussion

Here we contributed to the understanding of the long-standing issue of species packing by analyzing
the transitional regime between continuous coexistence and limiting similarity in the competitive
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Figure 7: The typical distance Ax = 2/ between the neighbouring species as a function of the half niche-
width o. Fitting equation: Ax = Y+ 60. Left: perturbation with a single central peak; fitting parameters:
Y=0.002+0.002, 5 =2.13+0.02. Right: fractal perturbation; ¥ = 0.00040.003, § = 1.3040.05. Observe
that the fitted y = 0 represents strict proportionality. The proportionality constant § is situation dependent but
is in the order of magnitude 1.

Lotka—Volterra model. Analytical studies have made it clear already that continuous coexistence
is structurally unstable (Gyllenberg and Meszéna 2005), but a kind of limiting similarity is the
generically expected behaviour (Meszéna et al. 2006). However, these results are far from sufficient
to guiding biological intuition properly. Is limiting similarity a solid ground of biological thinking,
or a shaky one, after all?

This question cannot be put to rest without combining the analytical insights with extensive
studies of specific models. As the Lotka—Volterra model is the classical workhorse of these studies,
it is a meaningful starting point. In this context Szab6 and Meszéna (2006) demonstrated that the
niche-width 20 is a good guess for the typical distance between neighbouring surviving species
provided that we are far from the situation of continuous coexistence. Here we studied the transition
regime.

As continuous coexistence is structurally unstable (i.e. it can be destroyed by an arbitrarily small
perturbation of the model definition) one could conjecture that an arbitrarily small departure from
this exceptional case would lead us to the “roughly 20 regime. In this case it would be expected
that the transition to continuous coexistence consists of slower and slower relaxation to the final
distribution. Our simulations demonstrated that this is not the case. The real transition goes through
denser and denser discrete equilibrium distributions until the continuous distribution is reached as a
limit at the zero value of €.

This conclusion is in line with the overall picture of limiting similarity. It was demonstrated
early on for two, or three, species in the Lotka—Volterra model that increasing similarity narrows
the parameter range allowing them to coexist (May and MacArthur 1972, May 1973). Higher
similarity is allowed, if we are satisfied with a more parameter-sensitive coexistence. Abrams (1983)
observed this “similarity-coexistence relationship” to be quite general, while Meszéna et al. (2006)



proved it in a model-independent way (see also Szildgyi and Meszéna 2008, 2009, in prep. about
generalizations for structured populations and fluctuations).

On a first glance, the possibility for the coexistence of a continuum of species seems to be
surprising. Nevertheless, it is evident that any predefined set of species can be made coexisting by
properly tuning their K values. Even more is true: by tuning the K's one can arrange coexistence with
any predefined density distribution. Specifically, if the competition function in the Lotka—Volterra
model is chosen to be Gaussian and the required species distribution is also a Gaussian, then the
carrying capacity curve must also be a Gaussian, calculated as a convolution of the other two
functions. Then this Gaussian carrying capacity is the one that, exceptionally, supports continuous
coexistence with that specific distribution. However, as there are species arbitrarily close to each
other, there exists an arbitrarily small perturbation of the carrying capacity curve after which the
continuum of coexisting phenotypes no longer exist. Nevertheless, the Gaussian nature of the
functions plays no specific role here: the cases of exceptional continuous coexistence could be
constructed from other functions as well.

These arguments consider the robustness of the existence of the coexisting fixed point against
the perturbation of the model. The dynamical stability of the fixed point (if it exists) is a separate
question. From this point of view the shape of the competition function does matter. Pigolotti et al.
(2007, 2008) demonstrated that continuous coexistence in the Lotka—Volterra model is dynamically
stable only if the competition function is positive definite, i.e. if its Fourier transform is positive
everywhere. From this point of view the Gaussian shape is a borderline case. If a different
competition function does not meet this criterion, then the continuous coexistence, constructed in
the way mentioned above, will be unstable. This possibility further strengthens the conclusion that
the continuous coexistence is not expected to be an observed behaviour.

It is obvious that any extinction threshold sets a limit to similarity in itself (May and MacArthur
1972, Pigolotti et al. 2007). An infinitely dense assembly of finite populations would consist of
infinitely many individuals, a contradiction. Also, there is always a physical threshold present
because it does not make sense to consider densities corresponding to less than one individual per
phenotype. In our simulations we set the extinction threshold so low that it did not affect our results.
We had to discretize the phenotype axis for practical reasons. Then, it was possible to choose the
extinction threshold so low that allowed the dense packing determined by the discretization (this
also means that the physical threshold does not bring any contradictions to the interpretation of the
model). Effectively, we studied the limit of similarity without the extinction threshold.

Note also the contradictory nature of postulating a phenotype-continuum together with a separate
threshold for each phenotype. Realistically, any kind of Allee effect should consider the similar
types together — or the phenotype variable is not a complete characterization of the populations.

Beyond the qualitative conclusions, a clear quantitative picture emerged: the number of survivors
is a linear function of the negative logarithm of the perturbation size. This result seems to be fairly
general. The very same logarithmic rule (9) emerged for all kinds of perturbing functions we tested,
from the simplest possible single peak to the most complex fractal function. In accordance with the
continuous coexistence case, the function (9) goes to infinity when € — 0. However, the transition
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from discrete to continuous happens quite fast, but still in a continuous way, for small €s. For
€ 2 0.1 one may rely on the intuition of a “niche width”.

A numerical study of such a simplified model as the Lotka—Volterra acquires its relevance from
the hope that the results are more general than the specific assumptions. Having the general analytic
theories both for continuous coexistence (Gyllenberg and Meszéna 2005) and for limiting similarity
(Meszéna et al. 2006) motivates us to conjecture the generality of the transition regime between
them as well. Unfortunately, we failed to find an analytic theory behind the observed logarithmic
dependence. It is quite easy to derive analytic results for coexistence of two, or a few, species in
the Lotka—Volterra model. However, we considered the coexistence of phenotypes, the number of
which goes to infinity in the € — 0 limit. Lacking the analytic insight, it is impossible to assess the
validity of our conjecture without studying further models numerically.

While further analysis of the problem is still necessary, our results give additional weight to the
view that limiting similarity is a good starting point of biological thinking. Species packing, that is
much denser than expected, seems to require quite specific model choices.
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