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Abstract

Intraspecific trait variation is widespread in nature, yet its effects on community dynamics
are not well understood. Here we explore the consequences of intraspecific trait variation for
coexistence in two- and multispecies competitive communities. For two species, the likelihood
of coexistence is in general reduced by intraspecific variation, except when the species have
almost equal trait means but different trait variances, such that one is a generalist and the other
a specialist consumer. In multispecies communities, the only strong effect of nonheritable
intraspecific variation is to reduce expected species richness. However, when intraspecific
variation is heritable, allowing for the possibility of trait evolution, communities are much more
resilient against environmental disturbance and exhibit far more predictable trait patterns. Our
results are robust to varying model parameters and relaxing model assumptions.

Statement of authorship: GB and RD conceived of the study and developed the model
framework; RD designed tests of trait patterns; GB designed tests of community robustness;
GB and RD wrote the manuscript.

1 Introduction

Despite the persistent (and generally valid) complaint that not enough attention is given to within-
species diversity, it is now in fact well established in mainstream ecology that intraspecific trait
variation (ITV) can have important ecological consequences (Hughes et al. 2008, Clark 2010,
Bolnick et al. 2011, Violle et al. 2012). What is not yet clear is how much ecological insight
we actually gain (or lose) by ignoring this variation, looking only at trait means. Do we get the
“basic picture”, which is then refined and made more precise by accounting for intraspecific trait
variation (Siefert 2012)? Or do we miss certain aspects of the community entirely? In the literature,
the importance of intraspecific variation is often equated with its prevalence. A recent study by
Siefert et al. (2015) estimates that, on average, 25% of all trait variation in plant communities is
intraspecific. The same study gives “general guidelines for when intraspecific trait variation is likely
to be substantial and therefore important to consider in plant community and ecosystem studies”
(our emphasis). Similarly, Albert et al. (2011) provide a practical guide for when intraspecific
trait variation should be included in trait-based studies; their criteria are also based on estimating
intraspecific variation prevalence. Our goal here is to study the importance of intraspecific variation
for community dynamics and in particular for coexistence, based not on prevalence but impact on
species richness, community pattern, and robustness. Critically, once there is individual variation
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within a species, part of that variation may be heritable. We therefore also consider the possibility of
nonzero heritability, leading to the evolution of species traits.

Consequences of intraspecific variation for the dynamics of single populations have been long
studied (Metz and Diekmann 1986, Caswell 2001, de Roos and Persson 2013). At the community
level, arguments about the consequences of within-species trait diversity abound. The most common
stance is that such variation blurs species boundaries, though authors disagree about whether this
would promote coexistence by facilitating ecological equivalence (Hubbell 2005) or hinder it by
erasing coexistence-enhancing species differences (Taper and Case 1985).

There are also some deeper theoretical explorations of the community consequences of in-
traspecific variation. Lichstein et al. (2007) looked at the consequences of individual variation in
competitive ability, assuming that lower mean performance is accompanied by higher intraspecific
variation (mean-variance tradeoff), and find that this enhances coexistence, albeit only slightly so. In
addition, community models with explicit life histories have shown strong community consequences
of intraspecific age, stage, or physiological structure (Moll and Brown 2008, van Leeuwen et al.
2014). Treating every species as a structured population and incorporating interactions between life
stages is a very general and powerful way of modeling species with individual variation (see de Roos
and Persson 2013, Vindenes and Langangen 2015 for general formalisms), but it can get arbitrarily
complicated, depending on the idiosyncrasies of the individual life histories of each species modeled.
As such, this approach may not be the most convenient to draw general conclusions from. Another,
relatively simple but still explicitly trait-based approach is taken in classic and some more recent
studies of character displacement (Roughgarden 1976, Slatkin 1979, 1980, Taper and Case 1985,
Vasseur et al. 2011). Here trait variation is driven by quantitative genetics and simple interactions
defined by those traits. While these studies draw important conclusions about how intraspecific
variation shapes competitive communities, they have traditionally focused on the evolutionary and
not the ecological aspect of the problem.

All the above approaches consider only two, or at most a handful of species. To our knowledge,
only two previous studies have looked at the effects of intraspecific variation on coexistence in
multispecies communities. Vellend (2006) simulated communities along a unidimensional trait axis,
with clonal reproduction and Lotka–Volterra competitive interactions. He found that within-species
trait diversity promotes community-wide coexistence. However, one problematic aspect of this study
is that, since all individuals breed true, the distinction between intra- and interspecific variation
is purely nominal. It therefore does not yield deep insights into the structure of communities
where conspecific individuals can exchange genetic material. Yamauchi and Miki (2009) modified
the model to address this problem, incorporating a finite-locus model of genetics following the
Shpak-Kondrashov hypergeometric model of inheritance (Shpak and Kondrashov 1999), instead of
simple clonal reproduction. They found, in contrast to Vellend (2006), that intraspecific variation
only promotes species diversity under a very restricted set of circumstances.

In this work we aim to give a comprehensive view of the consequences of intraspecific trait
variation on coexistence in both two- and multispecies communities. We consider both heritable and
nonheritable intraspecific variation in the framework of quantitative genetics (Lande 1976, Slatkin
1979, Bulmer 1980, Falconer 1981), coupled with Lotka–Volterra-style ecological interactions
(Roughgarden 1976, Slatkin 1980, Taper and Case 1985, Schreiber et al. 2011, Vasseur et al. 2011).
In contrast to Vellend (2006) and Yamauchi and Miki (2009), we do not focus exclusively on
species richness as a measure of whether coexistence is promoted. Rather, we additionally consider
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community pattern and community robustness against environmental perturbations. We find that
the only strong and general consequence of intraspecific variability per se is that it reduces species
richness, while its effect on trait patterns and community robustness is very small. In contrast, effects
are huge when part of the intraspecific variance is heritable. This allows species to evolve their trait
values towards local optima, thus alleviating historical constraints and leading to communities that
are far more robust and have far more regular trait patterns than corresponding communities with
zero heritability. We check and confirm that our results are not sensitive to our particular choice
of model parameters and simplifying assumptions such as the infinite-locus model of quantitative
genetics.

2 The model

We assume individuals of a species vary along a unidimensional trait of interest. The phenotypic
distribution of this trait is considered in the quantitative genetic limit (Lande 1976, Bulmer 1980,
Falconer 1981, Schreiber et al. 2011, Vasseur et al. 2011). In this limit, each of infinitely many loci
contributes an infinitesimal additive value to the trait, on top of normally distributed environmental
noise. Under these assumptions, the distribution pi(z, t) of species i’s trait value z at any moment of
time t is normal, with a total phenotypic variance σ2

i that does not change in response to selection
(Supporting Information, Section 1.1):

pi(z, t) =

√
1

2πσ2
i

exp
(
−(z−µi(t))2

2σ2
i

)
(1)

where µi(t) is the mean trait value at time t. The total phenotypic variance is the sum of the additive
genetic variance and an independent environmental variance, which we assume is species-specific
but does not change in time. The heritability h2

i in species i is defined as the ratio of the additive and
the total phenotypic variance (Falconer 1981). If species i has total population density Ni(t) at time
t, then Ni(t)pi(z, t)dz is the population density of individuals with phenotype values between z and
z+dz.

Since the shape and variance of the trait distribution does not change in the quantitative genetic
limit, the full distribution Ni(t)pi(z, t) can be recovered from just tracking the population density
and mean trait value of each species in time. These equations read

dNi(t)
dt

= Ni(t)
∫

ri(~N,~p,z, t)pi(z, t)dz (2)

dµi(t)
dt

= h2
i

∫
(z−µi(t))ri(~N,~p,z, t)pi(z, t)dz (3)

(Supporting Information, Section 1.2), where ri(~N,~p,z, t) is the per capita growth rate of species i’s
phenotype z, defined by the ecological interactions of the community (it is density- and frequency-
dependent, therefore written as a function of the vector of abundances ~N and trait distributions ~p).
The above equations therefore provide the general framework for the eco-evolutionary dynamics in
the presence of intraspecific trait variation that will hold regardless of the ecological details.

Ecological interactions are assumed to depend only on phenotype, not on species identity. We
use the Lotka–Volterra model in the quantitative genetic limit (Roughgarden 1976, Slatkin 1979,
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1980, Taper and Case 1985, Vasseur et al. 2011), where the fitness of any individual with phenotype
z depends both on its absolute position and its distance from any other individual along the trait axis,
summed over all individuals:

r(~N,~p,z, t) = b(z)−
S

∑
j=1

N j(t)
∫

a(z,z′)p j(z′, t)dz′ (4)

(Supporting Information, Section 2.1). Here b(z) is the maximum population growth an individual
with phenotype z would achieve were it to reproduce clonally, S is the number of species, and a(z,z′)
is the interaction kernel—the effect of an individual with phenotype z′ on the growth rate of another
individual with phenotype z. Substituting Eq. (4) into the general equations (2) and (3), we get

dNi(t)
dt

= Ni(t)

(
bi(t)−

S

∑
j=1

αi j(t)N j(t)

)
(5)

dµi(t)
dt

= h2
i

(
bi(t)−

S

∑
j=1

βi j(t)N j(t)

)
(6)

Here bi(t) is a species-level intrinsic growth rate, αi j(t) are species-level competition coefficients,
bi(t) quantifies the evolutionary pressure on species i caused by growth, and βi j(t) quantifies the
evolutionary pressure on species i caused by competition with species j. Given the functions a(z,z′)
and b(z), these four ingredient functions can be obtained analytically by evaluating appropriate
integrals (Supporting Information, Section 2). In our study, the interaction kernel a(z,z′) is Gaussian
with competition width ω:

a(z,z′) = exp
(
−(z− z′)2

ω2

)
(7)

We assume b(z) is positive on an interval [−θ , θ ] but zero outside; θ > 0 is therefore the effective
half-width of the trait axis. Biologically, this means that any trait value falling outside this region is
too extreme to efficiently forage for any of the available resources and thus achieve positive growth.
Within the range [−θ , θ ] however, we consider three alternative forms: b(z) = 1 (rectangular),
b(z) = 1− z2/θ 2 (quadratic), and b(z) = (z+θ)/(2θ) (asymmetric triangular).

3 Two-species case

A model predicts coexistence if it has an equilibrium where all species abundances are positive
(feasibility; Barabás et al. 2012, Rohr et al. 2014), the equilibrium is dynamically stable (stability),
and the equilibrium remains stable and feasible under a sufficiently wide range of environmental
conditions (robustness; Barabás et al. 2014). The two-species case of the quantitative genetic
Lotka–Volterra model is particularly interesting as it gives insight into the coexistence-affecting
role played by intraspecific variation. In the two-species version of the model with zero heritability,
any feasible equilibrium is always globally stable (Supporting Information, Section 3.1). Therefore,
analyses of feasibility and robustness are sufficient to determine whether species coexist.

Feasibility in our model is characterized by pairs of intrinsic growth rates (b1, b2) that lead to
positive equilibrium densities. Robustness may then be characterized by the fraction of growth rate
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combinations leading to feasibility, out of all possible combinations. This is the feasibility domain
Ξ. We derive a formula for Ξ in the Supporting Information (Eq. 3.10):

Ξ =
2
π

[
arctan

(
e

(µ1−µ2)
2

2σ2
1 +2σ2

2 +ω2

√
2σ2

1 +2σ2
2 +ω2

4σ2
2 +ω2

)
− arctan

(
e
− (µ1−µ2)

2

2σ2
1 +2σ2

2 +ω2

√
4σ2

1 +ω2

2σ2
1 +2σ2

2 +ω2

)]
.

(8)
Note that there are alternative ways of characterizing robustness (Supporting Information, Sec-
tion 3.2); they yield qualitatively identical results.

The predictions of the formula are shown on Figure 1 as a function of the distance between
species’ mean traits, for various values of the intraspecific variances (Supporting Information,
Section 3.2). There are two main messages. First, unless species’ trait means are very close,
more intraspecific variation always leads to a smaller feasibility domain, diminishing the chances
of coexistence. Second, for very similar mean traits, having sufficiently different trait variances
promotes coexistence, and this effect is larger for more substantial differences between σ1 and σ2.
This can be understood in terms of Figure 2: the overlap between two species having similar trait
means is reduced by a difference in variances (phenotypic subsidy; Bolnick et al. 2011). Since
Eq. (8) is valid for all trait means and variances, it handles these two modes of coexistence in a
unified way. Moreover, the formula allows for the direct comparison of coexistence with- and
without intraspecific variability (Figure 1, solid versus dashed lines).

There is also an evolutionary aspect to this problem. So far we have treated the mean traits of
the species as parameters. If heritabilities are nonzero however, these will be subject to change,
governed by Eq. (6). If the intraspecific variances are sufficiently different, the two species can
converge and end up having equal mean trait values (Roughgarden 1976, Slatkin 1979, 1980, Taper
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Figure 1: The fraction of intrinsic growth rate combinations out of all possible ones that lead to coexistence
(the feasibility domain), as a function of mean trait distance and intraspecific variability. The competition
width is ω = 1.1 for all cases. The dashed black line is the reference case with no intraspecific variation:
σ1 = σ2 = 0. For all solid curves, σ1 = 1; colors denote different values of σ2 (see legend). Except for very
small differences in mean trait, the case with no intraspecific variation leads to the largest feasibility domains.
For very small mean trait difference, the feasibility domain is larger for bigger differences in σ1 and σ2.
Intraspecific variation therefore promotes the coexistence of tightly packed species, but only if their σs are
sufficiently different.
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and Case 1985; Supporting Information, Section 3.3). Although strictly speaking the evolution
of equal trait means is only possible via symmetric intrinsic growth functions b(z), this result is
robust to introducing an asymmetry in b(z) in the sense that the difference in mean trait values
at the eco-evolutionary equilibrium will be much smaller than either of the intraspecific standard
deviations (Supporting Information, Section 3.4). In the parlance of Taper and Case (1985), character
displacement will not be substantial.

In summary, a rule of thumb for the effect of intraspecific variation on two-species coexistence
is that it is harmful, considerably narrowing the range of parameter combinations allowing for
coexistence compared with the no-variation scenario. The only exception is when the trait means
are very similar and the standard deviations are sufficiently different. Due to this possibility, much
tighter species packing may in principle be achieved, provided that one species is a generalist and
the other a specialist consumer. Species can either be segregated in their trait means or in their trait
variances. Focusing exclusively on the mean trait may lead to the false conclusion that two species
are coexisting without niche segregation.

4 Multispecies case

4.1 Motivating examples

Figure 3 shows nine communities at equilibrium: without intraspecific variation (left column),
with nonheritable variation (center column), and heritable variation (right column; h2 = 0.1 for all
species). The σi in the center and right columns are identical in each row and are uniformly drawn
from [0.1, 0.3] (top row), [0.01, 0.05] (middle row), and [0.01, 0.3] (bottom row). Rows differ in the
form of b(z) (top: rectangular; middle: quadratic; bottom: triangular). Otherwise, all panels have
the same parameters and initial conditions. In each row, the number of persisting species is highest
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Figure 2: Left: The intensity of interspecific competition between two species with the same mean trait
is lowered if their trait variances are different. The reason is that the species with the higher variance has
individuals that do not overlap with individuals of the the other species. This way those individuals avoid
competition by accessing different resources. Right: when two species with the same mean trait have very
similar intraspecific variances, the overlap in individuals is not reduced substantially, leading to nonrobust
coexistence. The dashed gray line indicates the species’ mean trait position.
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Figure 3: Equilibrium state of simulated communities. Columns correspond to no intraspecific variability
(left), nonheritable variability (middle), and heritable variation (right). Rows correspond to different shapes
of b(z) (red dashed lines; not to scale): rectangular (top), quadratic (middle), and triangular (bottom). In
all panels, θ = 0.5, ω = 0.1, initial mean trait positions are uniformly sampled from [−θ , θ ], and the initial
species richness is S = 51. Parameters and initial conditions are identical between middle and right columns,
except for heritability. The left column is exactly as the middle column except all σs are zero. Plot headers
show the number of surviving species. Ordinates show actual population density in left column; in the center
and right columns, the area under the species trait distributions yields the densities. When heritability is
nonzero (right), species space themselves out more evenly than when they cannot change their initial mean
trait positions.
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in the absence and intermediate in the presence of nonheritable intraspecific variation, and lowest
in the presence of heritable variation. In addition to reduced species richness, positive heritability
leads to much more regular spacing between surviving species, with no two species very closely
packed along the trait axis.

These observations outline the questions pertinent to the effects of intraspecific variation and
heritability on multispecies coexistence. How does intraspecific variation affect species richness, and
is the effect different for zero and nonzero heritability? Are species more evenly spaced in the case
of nonzero heritability? Do we ever observe trait convergence in multispecies communities? How
does intraspecific variation affect our ability to detect the signature of competition in field-collected
trait data? And what is the effect of intraspecific variation and heritability on the community’s
ability to withstand environmental perturbations?

4.2 The simulation scheme

To address these questions, we use data generated by the quantitative genetic Lotka–Volterra
model described in Section 2. Our simulations are organized into sets. Within each set there are
90 simulations, each with a different choice of parameters but the same initial conditions. All
simulations start with S = 51 species, θ = 1/2, and initial abundances equal to one. The initial trait
means µi(0) are uniformly sampled from the interval [−θ , θ ]. Then, the set is generated by varying
the following parameters independently:

• Heritability: all species share the same h2
i ≡ h2, equal to either 0, 0.1, or 0.5.

• Shape of b(z): either rectangular, quadratic, or triangular (Section 2).

• Competition width ω: either 0.1, 0.15, or 0.2.

• Degree of intraspecific variability: species’ intraspecific standard deviations σi are uniformly
sampled from either [0, 0] (no variation), [0.01, 0.05] (low levels of variation), [0.01, 0.3]
(mixed levels of variation), or [0.1, 0.3] (high levels of variation).

Combinations with zero intraspecific variability (σi = 0) but nonzero heritability are discarded, since
species cannot evolve without intraspecific variation. This results in (three heritabilities) × (three
intrinsic growth functions) × (three competition widths) × (four intraspecific variability levels)
= 108 different simulations within a set, minus the 18 cases with nonzero heritabilities but zero
intraspecific variation, for a total of 90 different combinations. A total of 100 such sets are generated
altogether, each determined by the set of initial trait means.

Note that both the initial trait positions µi(0) and the intraspecific standard deviations for each
of the three nonzero cases (low, mixed, and high levels) are pre-generated for each set prior to
simulations and so are kept the same within each set. This way we can disentangle the effects of
initial conditions from those of the parameters. Each simulation ran for 1010 time units, more than
enough in every case to reach eco-evolutionary equilibrium. Species with final density lower than
an extinction threshold of Next = 10−3 were removed from the community.

4.3 Species richness

Figure 4 shows species richness results across all our sets. Compared to the σi = 0 case (top left
subplot), introducing intraspecific variation with zero heritability lowers the expected diversity (top
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Figure 4: The effect of intraspecific variation and heritability on species richness. Rows of subplots show
different heritability values; columns show different levels of intraspecific trait variability (ITV). The ordinate
of each subplot is the number of extant species at equilibrium, out of the initial 51. Within each subplot,
the three box plots correspond to different values of ω , as shown on the abscissa: they summarize the
simulation results across all sets. Only results parameterized with a quadratic intrinsic growth function
b(z) are shown; see Supporting Information, Section 4.3 for results with a rectangular and triangular b(z),
yielding qualitatively the same results. Box plot guide: median (lines), 25% to 75% quartiles (boxes), ranges
(whiskers), outliers (points; defined as falling outside 1.5 times the interquartile range of the box).

row). With positive heritability, the equilibrium number of species further decreases, and becomes
more predictable. Comparing the panels of Figure 3 reveals that species become more evenly
spaced if they are allowed to evolve, which also results in more predictable species counts (see also
Section 4.4).

Notice that, while there is an important distinction between zero and nonzero heritability, the
precise value of h2 does not matter much. This can be understood from the general equations Eqs. (2)
and (3): heritability multiplies the whole right hand side of Eq. (3), therefore as long as h2

i ≡ h2 for
all species, its role is simply to change the timescale of evolution.

Our simulation results are supported by an analytical derivation in the special case of h2 = 0 and
σi = σ for all species. In this case, the ratio of species richnesses with- and without intraspecific
variation is shown to be

species richness with σi = σ
species richness with σi = 0

=
1√

4(σ/ω)2 +1
(9)

(Supporting Information, Section 4.1), predicting a monotonic decline of diversity with increasing
phenotypic variance. This is consistent with the results in the first row of Figure 4.

4.4 Trait patterns and detectability

Lotka–Volterra models supported the principle that coexisting species cannot be arbitrarily similar to
one another (limiting similarity; MacArthur and Levins 1967). Subsequent investigations rigorously
demonstrated that the likelihood of coexistence decreases with increasing species similarity (Gyllen-
berg and Meszéna 2005, Barabás et al. 2012), and simulation results generally support the idea that
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species are distributed more evenly along the trait axis than expected by chance, though this claim
is not strictly proven. Here we ask how intraspecific variation affects this tendency towards even
spacing.

To assess whether species’ mean traits are more evenly distributed than expected by chance alone,
we use the coefficient of variation (CV) of distances between the trait means of adjacent species on
the trait axis; lower values indicate more even spacing. Figure 5 (left panel) shows the distribution of
CVs in our simulations. Compared with the case without intraspecific variation, communities with
variation tend to have lower CVs, suggesting that species are more evenly spaced when intraspecific
variation occurs. However, the trend toward lower CVs with intraspecific variation is weak when
heritability is zero, as can be seen by comparing the subplots of the top row. In contrast, the drop
in CV is dramatic when heritability is nonzero. This suggests that when heritability is zero, even
spacing is limited by the trait values available in the species pool, but this constraint is alleviated
when species can evolve and thus change their initial—possibly unfavorable—trait positions.

One may wonder whether the possibility of trait convergence described in Section 3 is realized
in multispecies communities with h2 > 0, and whether this would have an impact on community
pattern. As it happens, such convergence is indeed observed, but too sporadically to have an
appreciable impact on community structure overall (Supporting Information, Section 4.4).

Statistically significant overdispersion is commonly taken as evidence of competition structuring
the community (Kraft et al. 2008, Kraft and Ackerly 2010, Baraloto et al. 2012, Vergnon et al. 2013).
While one must be careful with overly simplistic applications of this idea (see, e.g., Mayfield and
Levine 2010 and D’Andrea and Ostling in press), it is nevertheless meaningful to ask whether the
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Figure 5: Left: as Figure 4, except the ordinate shows the evenness of the distribution of mean trait values
along the trait axis, as measured by the coefficient of variation of nearest-neighbor distances. The CV is not
changed much by nonheritable intraspecific variation, but drops significantly when heritability is nonzero.
This means that the mean traits in communities where species can evolve are much more evenly spaced than
in corresponding communities without the possibility of trait evolution. Right: As on the left, except the
ordinate shows the probability that the degree of even spacing a given community ends up with is produced by
chance (p-value). For lower values of intraspecific variability (second and third columns), heritable variation
results in far lower p-values. For high levels of intraspecific variation and ω large, the effect of heritable
variation on the p-values is smaller.
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CVs we obtained are indeed lower than expected by chance. To examine the statistical significance
of the overdispersion shown in the left panel of Figure 5, we used a null model consisting of
communities whose species’ trait values are randomly drawn from a uniform distribution. Our null
CV is independent of trait range but depends on the number of species, so each community in our
data is compared to null communities of matching species richness. We compare each community
in our data to a set of 1000 corresponding null communities, and obtain a p-value by tallying the
proportion of null CVs that were lower than the CV in the data community. Low p-values mean the
community is more evenly spaced than expected by chance. The distribution of p-values is shown in
the right panel of Figure 5.

We see that significance in the cases without intraspecific variation may be high or low depending
on the competition width ω . Intraspecific variation without heritability either does not substantially
alter p-values (ω = 0.15, 0.2), or else increases them (ω = 0.1). Again, positive heritability is the
real game changer, substantially lowering p-values. Overall, spacing is more even than expected
by chance when species are allowed to evolve, and intraspecific variability and ω are not too large.
However, these higher p-values are actually related to the fact that higher levels of variation and
larger values of ω result in lower species richness (compare Figures 4 and 5), reducing statistical
power. Thus p-values are increased despite the fact that spacing is more even than in corresponding
cases without intraspecific variability.

We conclude that intraspecific variation by itself does not fundamentally change the original
tendency for even spacing, but that this even spacing is greatly enhanced when intraspecific vari-
ation is heritable. This also greatly increases our ability to detect such spacing, except possibly
when species richness is very low. This has implications for pattern detection in field studies: in
communities with heritable intraspecific variation and enough species to justify pattern-based tests
in the first place, species’ mean traits should be significantly more evenly spaced than expected by
chance.

4.5 Community robustness

Natural communities are subject to constant perturbations of abundances as well as of the environ-
mental conditions influencing their dynamics. While reaching an eco-evolutionary equilibrium state
implies its local stability, one may also ask whether it is robust—i.e., how much the community’s
ecological stability and feasibility are threatened by changes in the external environment (Section 3).
For instance, changes in resource supply or ambient temperature may alter the shape of the growth
function b(z). Local stability of the community in the final state is guaranteed if the community ma-
trix has all eigenvalues lying in the left half of the complex plane. In turn, the geometric mean of the
magnitudes of the community matrix’s eigenvalues is a measure of community robustness (Meszéna
et al. 2006, Barabás et al. 2012, Aufderheide et al. 2013, Barabás et al. 2014) comparable across
communities with different numbers of species (Supporting Information, Section 4.2). This quantity,
the “average community robustness”, measures the expected response of a system to perturbing
environmental conditions. The left panel of Figure 6 compares this metric across our simulation
sets. Intraspecific variation, in and of itself, does not influence average community robustness much.
However, when heritability is nonzero, there is a strong immediate effect: communities become
much more robust than they were in the absence of heritable variation. Note that this effect is not due
to heritability per se, since two communities with the same trait distributions have equal robustness,
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Figure 6: Left: average community robustness of our simulated communities, as measured by the geometric
mean of the eigenvalues of the community matrix. Right: robustness heterogeneity of the communities,
measured by the geometric standard deviation of the eigenvalues. Otherwise, the plots are organized as in
Figure 4. Intraspecific variation by itself has limited effect on robustness. However, when heritability is
nonzero, communities end up with both a larger average community robustness and a reduced robustness
heterogeneity. This makes them far more resistant against external perturbations as a whole.

regardless of h2. Rather, it is a consequence of species evolving their trait means to locations more
conducive to robustness (Figure 3, middle versus right column).

There is another aspect to robustness. Imagine two systems having identical average community
robustness, but suppose the first of these reacts to every environmental perturbation in the same
way, while the second one is completely insensitive to perturbing some environmental conditions,
but extremely sensitive to perturbing others. It is therefore also of interest to see not just how
robust a system is to the average environmental perturbation, but whether it reacts strongly to
specific perturbations. This can be measured by the geometric standard deviation of the eigenvalues’
magnitudes (“robustness heterogeneity”; Supporting Information, Section 4.2).

As it turns out, not only do communities with heritable variation have a higher average com-
munity robustness: their robustness heterogeneity is also much lower (Figure 6, right panel). As
discussed in Section 4.4, when species can evolve, they space themselves out far more evenly along
the trait axis than expected by chance. When heritability is zero however, communities sometimes
end up with species very closely packed along the trait axis, with minimal niche differentiation
between them and no ability to change the unfavorable trait positions, making it more likely that any
particular change in environmental conditions giving an advantage to just one of those two species
will result in the extinction of the other. This in turn leads to increased robustness heterogeneity.

4.6 Sensitivity of the results to the assumption of infinitely many loci

Since our model is based on quantitative genetic assumptions of an infinite number of loci con-
tributing to the trait of interest, all trait distributions are normal, and their variances do not change
in response to selection (Bulmer 1980). To check the sensitivity of our results to this assumption,
we implemented finite-locus genetics using a hypergeometric model of inheritance (Shpak and
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Kondrashov 1999). In this case heritabilities themselves evolve, and trait distributions are no
longer normal or of constant shape. We found that even with a small number of loci, results from
the finite-locus model are not qualitatively different (Supporting Information, Section 5). These
assumptions are therefore not restrictive.

5 Discussion

In this work we explored the consequences of intraspecific trait variation for the stability, feasibility,
and robustness of coexistence in two-species communities, and for species richness, community
pattern, and robustness in multispecies communities, where individuals vary in a unidimensional
trait of interest. We found that, although intraspecific variation in principle allows for coexistence
between two species with more similar trait means than would be possible in the absence of such
variation, species richness decreases with increasing intraspecific variance in the multispecies case.
Surprisingly, trait spacing and robustness were not much affected by intraspecific variation alone.
Contrary to the idea that large levels of intraspecific variation signal its ecological importance (Albert
et al. 2011, Siefert et al. 2015), this suggests that nonheritable variation within a species may be
safely ignored even when it is substantial, at least for the purposes of these two community properties.
However, the picture changes drastically when the variation is partially heritable: species in the
community become more evenly spaced along the trait axis, and more resistant to environmental
perturbations.

It is common to encounter claims in the literature that intraspecific variation promotes coex-
istence (Hubbell 2005, Vellend 2006, Messier et al. 2010, Bolnick et al. 2011, Violle et al. 2012).
Our results make a point of the importance of defining precisely what is meant by “promote”.
Intraspecific variation does not, for example, lead to higher species richness; rather, it always and
predictably reduces species richness. On the other hand, it may lead to coexistence that is more
resilient to environmental perturbations. Whether it does so depends on whether it is heritable:
communities with heritable intraspecific variation evolve to a much more robust state than those
without, or with nonheritable variation.

Here we have worked with supersaturated communities where the initial number of species is
always substantially greater than in the final state. This means that our methods can be used to
study community assembly and response to selective pressure, but are ill-suited for approaching the
problem from the other end: starting with low diversity and ending up with species-rich assemblages
via adaptive diversification (Geritz et al. 1998). Our model does not allow for evolutionary branching
because the shape of the trait distribution cannot change in response to selection. Speciation and its
effects on community structure are therefore outside our scope.

Our work is relevant for empirical studies detecting the signature of species interactions in
functional trait data (Kraft et al. 2008, Kraft and Ackerly 2010, Baraloto et al. 2012, Vergnon et al.
2013). Pattern detection in these studies generally proceeds by rejecting appropriate null models
assuming no interactions; significant overdispersion in the trait of interest is taken as evidence of
competition structuring the community (Kraft and Ackerly 2010)—though, as mentioned before,
such evidence must be interpreted with care (Mayfield and Levine 2010, D’Andrea and Ostling
in press). These studies usually ignore individual variation (but see Siefert 2012). Here we took
this variation into account, and also checked the sensitivity of our results to varying parameters
and assumptions: different levels of intraspecific variation, shapes of the intrinsic growth function,
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competition widths, and heritability. The degree of intraspecific variation and the competition width
have the strongest influence on species richness; positive heritability greatly enhances even spacing
and robustness, and the degree of heritability affects the time scale over which these effects are
observed. We also checked that our results are not sensitive to the infinite-locus assumption of
quantitative genetics. All in all, the predicted community pattern is robust and very characteristic
(Figure 3, right column).

Despite this strong prediction, trait data are idiosyncratic, sometimes conforming to these
expectations (e.g., Grant et al. 1985), but often revealing considerable overlap between species
(Clark 2010, Clark et al. 2011, Siefert 2012, Vergnon et al. 2013, Siefert et al. 2015), and no
strikingly even spacing even in cases where overdispersion is detected (e.g., Kraft et al. 2008).
Discrepancy with observations may be due to a number of reasons. First, zero heritability leads
to more noisy patterns (Figure 3, middle column). Second, the Lotka–Volterra model may not
be adequate. Third, even if it is, competition between individuals may not be a function of their
trait distance or depend on the trait at all. Fourth, immigration from outside sources may lead
to persistence of species that would otherwise be extirpated. Fifth, the system could be far from
equilibrium. Sixth, more than one trait could be driving community dynamics. Let us consider each
of these possibilities in turn.

Studies show that almost all traits imaginable have heritabilities between 0.1 and 0.9 (Mousseau
and Roff 1987), and so h2 = 0 does not appear plausible—still, this must be determined empirically
on a case-by-case basis. Non-Lotka–Volterra interactions (nonlinear relationships between densities
and per capita growth rates) may cause the system to no longer settle on a point equilibrium: eco-
evolutionary cycles (as in Vasseur et al. 2011 or Patel and Schreiber 2016) become possible. When
the dynamics do settle on a point equilibrium however, linearization around the equilibrium will
reduce the model to Lotka–Volterra form, and thus we do not expect fundamentally different results.
Naturally, in many cases a(z,z′) will not be a simple function of distance, as e.g. in systems with
competitive hierarchies (Tilman 1994, Muller-Landau 2010). These models may produce patterns in
which spacing between species is not homogeneous along the trait axis.

For source-sink systems, sufficiently strong immigration may blur expected pattern. Immigration
rates should therefore be estimated (Abadi et al. 2010), or the scale of the study extended to make the
communities closed to migration. Furthermore, a system far from equilibrium may display transient
patters quite different from those expected at equilibrium (D’Andrea and Ostling in press). There are
ways to infer whether transients are indeed dominating. For instance, independent evidence for fast
and predictable recovery from disturbance (Clark 2010) would render transients implausible. Slow
recovery times make transients more likely, and successional patterns not converging on predictable
species compositions may signal ecological equivalence or alternative stable states.

Even in a system with positive heritability, fast and predictable disturbance recovery, and
negligible immigration, any pattern may be obscured or even reversed (a phenomenon known as
the “ecological fallacy”) if niche space is high-dimensional but the data are projected on a single
trait axis (Clark 2010, Clark et al. 2010, 2011). We conducted a preliminary exploration and found
that, although multidimensional interactions lead to the same regular spacing as in Figure 3, this
regularity is lost when the pattern is projected onto just one axis (Supporting Information, Section 6).
Multidimensional niche differentiation may be evidenced by whether individual-level responses to
environmental changes covary more within than between species (Clark 2010). Studies aimed at
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detecting trait patterning along a single dimension implicitly assume that the trait in question is of
overriding importance in the system at hand.

The utility of our results lie in that, when the model assumptions are met, they provide strong
predictions for community structure, and when those assumptions are not met, they narrow down the
potential reasons to a handful of testable hypotheses amenable to further empirical investigations.
This way, they can facilitate a deeper understanding of the ecology of natural systems.
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1 Deriving the basic quantitative genetic model

1.1 The model in discrete time

We model the dynamics of S species differing in some ecologically relevant trait z. Each individual
can be described by its trait, but each species is comprised of individuals with several different trait
values. The number of individuals within species i at time t is Ni(t), while the distribution of traits
within the species is given by the function pi(z, t). By definition, this function satisfies

∫
pi(z, t)dz = 1 (1.1)

at every moment of time t; the limits of integration encompass the whole trait axis, which for
simplicity we take to go between minus and plus infinity unless otherwise noted. Ni(t)pi(z, t)dz is
then the population density of species i’s individuals with phenotype value between z and z+dz.

The basic setup of our dynamical model follows the classical framework from population
genetics (Lande 1976, Slatkin 1979, 1980, Falconer 1981, Taper and Case 1985, 1992, Schreiber
et al. 2011, Vasseur et al. 2011). Usually, these formulations work in discrete time. Here we show
the derivation of the continuous-time model, building on the discrete-time version in the weak
selection limit.

To do this, we first assume species with nonverlapping generations undergoing selection and
then reproduction:

Ni(t)pi(z, t)
selection−−−−→ N′i (t)p′i(z, t)

reproduction−−−−−−→ Ni(t +Ti)pi(z, t +Ti), (1.2)

where the prime denotes state after selection but before reproduction, Ti is the generation time of
species i, and Wi(~N,~p,z, t) is the absolute fitness of species i’s phenotype z at time t:

N′i (t)p′i(z, t) =Wi(~N,~p,z, t)Ni(t)pi(z, t). (1.3)

Note that Wi(~N,~p,z, t) will in general depend on the abundances and trait distributions of all
interacting species (denoted by the vectors ~N and ~p). Here we apply the standard sleight of hand of
assuming that Wi(~N,~p,z, t) describes both birth and death processes. In principle, the population
first undergoes viability selection and then reproduction as in Eq. (1.2). Having Wi(~N,~p,z, t)
include both birth and death, it is tacitly assumed that both processes happen relative to the original
Ni(t)pi(z, t), instead of births happening relative to the primed quantities. This also means that the
only role of the reproduction phase is to change the trait distributions pi(z, t) but not the population
densities: N′i (t) = Ni(t + Ti). However, the error made this way is negligible if the difference
between Ni(t)pi(z, t) and N′i (t)p′i(z, t) is small, which will be the case if selection is sufficiently
weak. We will therefore assume we are in the weak selection limit (Bürger 2011), i.e.,

Wi(~N,~p,z, t) = 1+ sTi ri(~N,~p,z, t), (1.4)

where s� 1 is a small dimensionless parameter, and the function ri(~N,~p,z, t) is the rate of births
minus deaths per unit of time at time t. It is therefore the per capita growth rate of species i,
determined by the ecological interactions within the community.

We work in the quantitative genetic limit, i.e., the trait in question is determined by the action
of many independent loci, each contributing a small additive effect to the trait. In this case, the
following important results hold (Bulmer 1980, Falconer 1981):
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• The trait distribution is always normal, so one can write

pi(z, t) =

√
1

2πσ2
i

exp
(
−(z−µi(t))2

2σ2
i

)
, (1.5)

where µi(t) is the mean trait of species i at time t, and σ2
i is its intraspecific trait variance.

• Only the mean µi(t) changes in response to selection, leaving both the shape and the variance
of pi(z, t) unaffected. This introduces a great simplification because, instead of having to
track the dynamics of the whole trait distribution, we can simply track its mean and treat the
σ2

i as externally defined parameters to the model. This simplification is the consequence of
the idealization that infinitely many loci, each with an infinitesimal additive effect, determine
the genetic makeup of the trait in question; see Section 5 for the effects of relaxing this
assumption.

• The total phenotypic variance σ2
i of species i is the sum of the additive genetic variance

σ2
A,i and the environmental variance σ2

E,i. The ratio h2
i = σ2

A,i/(σ2
A,i +σ2

E,i) = σ2
A,i/σ2

i is the
heritability of the trait. Since in the limit of quantitative genetics the additive variance does
not change, and we will assume throughout that the environmental variance of a given species
is also unchanging, this means that the h2

i remain constant as well.

With this specification of the selection and birth processes, one can derive the dynamics of the
species densities and traits for any fitness function Wi(~N,~p,z, t). To obtain the dynamics of the
population densities from one generation to the next, we integrate Eq. (1.3) over z to get

N′i (t)
∫

p′i(z, t)dz = Ni(t)
∫

Wi(~N,~p,z, t)pi(z, t)dz. (1.6)

Using N′i (t) = Ni(t +Ti) and Eq. (1.1) on the left hand side:

Ni(t +Ti) = Ni(t)
∫

Wi(~N,~p,z, t)pi(z, t)dz. (1.7)

To obtain the time evolution of the trait distributions, note that only their means can change in the
quantitative genetics approximation, as discussed above. Therefore we only need to track µi(t)
instead of pi(z, t). By definition, the mean trait at time t is given by

µi(t) =
∫

zpi(z, t)dz. (1.8)

The equation for the trait means can be written using the breeder’s equation (Falconer 1981),
according to which the change in mean trait from one generation to the next (response to selection)
is equal to the heritability times the selection differential:

µi(t +Ti)−µi(t) = h2
i
[
µ ′i (t)−µi(t)

]
. (1.9)

Here h2
i is the heritability, and µ ′i (t) is the mean of the trait after selection but before reproduction.

We can obtain µ ′i (t) by first rearranging Eq. (1.3) and using N′i (t) = Ni(t +Ti):

p′i(z, t) =
Wi(~N,~p,z, t)Ni(t)pi(z, t)

Ni(t +Ti)
. (1.10)
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Using Eq. (1.7) in the denominator:

p′i(z, t) =
Wi(~N,~p,z, t)Ni(t)pi(z, t)

Ni(t)
∫

Wi(~N,~p,z′, t)pi(z′, t)dz′
=

Wi(~N,~p,z, t)pi(z, t)∫
Wi(~N,~p,z′, t)pi(z′, t)dz′

, (1.11)

where we switched to z′ for the integration variable to distinguish it from z in the numerator.
Multiplying both sides of Eq. (1.11) by z and integrating, we get

∫
zp′i(z, t)dz =

∫
zWi(~N,~p,z, t)pi(z, t)dz

∫
Wi(~N,~p,z′, t)pi(z′, t)dz′

, (1.12)

or, using Eq. (1.8) on the left hand side,

µ ′i (t) =

∫
zWi(~N,~p,z, t)pi(z, t)dz

∫
Wi(~N,~p,z′, t)pi(z′, t)dz′

. (1.13)

Substituting this into the breeder’s equation Eq. (1.9), we finally have

µi(t +Ti)−µi(t) = h2
i




∫
zWi(~N,~p,z, t)pi(z, t)dz

∫
Wi(~N,~p,z′, t)pi(z′, t)dz′

−µi(t)


. (1.14)

1.2 Continuous-time dynamics in the weak selection limit

We can obtain a differential equation approximation to Eqs. (1.7) and (1.14) in the weak selection
limit of Eq. (1.4). Starting with Eq. (1.7), it reads

Ni(t +Ti) = Ni(t)
∫ [

1+ sTi ri(~N,~p,z, t)
]

pi(z, t)dz, (1.15)

or, using Eq. (1.1) on the right hand side,

Ni(t +Ti) = Ni(t)+ sTi Ni(t)
∫

ri(~N,~p,z, t)pi(z, t)dz. (1.16)

Rearranging, we get

Ni(t +Ti)−Ni(t)
sTi

= Ni(t)
∫

ri(~N,~p,z, t)pi(z, t)dz. (1.17)

We define the new measure of time τ = ts and the new density measure Ñi(τ) = Ni(t) (Nagylaki
1992, p. 99; Bürger 2011). The left hand side above then reads [Ñi(τ + sTi)− Ñi(τ)]/(sTi), which
in the limit of s→ 0 converges to dÑi(τ)/dτ . Understanding that this change of units has taken
place but reverting to our original symbols t and Ni(t) for notational convenience, Eq. (1.17) finally
becomes

dNi(t)
dt

= Ni(t)
∫

ri(~N,~p,z, t)pi(z, t)dz. (1.18)
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Turning to the trait means, Eq. (1.14) in the weak selection limit of Eq. (1.4) reads

µi(t +Ti)−µi(t) = h2
i




∫
z
[
1+ sTi ri(~N,~p,z, t)

]
pi(z, t)dz

∫ [
1+ sTi ri(~N,~p,z′, t)

]
pi(z′, t)dz′

−µi(t)


. (1.19)

Using Eqs. (1.1) and (1.8) on the right hand side:

µi(t +Ti)−µi(t) = h2
i




µi(t)+ sTi

∫
zri(~N,~p,z, t)pi(z, t)dz

1+ sTi

∫
ri(~N,~p,z′, t)pi(z′, t)dz′

−µi(t)


. (1.20)

Taylor expanding in s� 1 and neglecting terms of order s2 or higher:

µi(t +Ti)−µi(t)≈ h2
i

(
sTi

∫
zri(~N,~p,z, t)pi(z, t)dz−µi(t)sTi

∫
ri(~N,~p,z, t)pi(z, t)dz

)
. (1.21)

Rearranging, we get

µi(t +Ti)−µi(t)
sTi

= h2
i

∫
(z−µi(t))ri(~N,~p,z, t)pi(z, t)dz, (1.22)

at which point we can rescale time and take the s→ 0 limit exactly as before, obtaining

dµi(t)
dt

= h2
i

∫
(z−µi(t))ri(~N,~p,z, t)pi(z, t)dz. (1.23)

Eqs. (1.18) and (1.23) govern the eco-evolutionary dynamics of the community given the ecology
of the system, specified by the function ri(~N,~p,z, t).

Although we obtained the governing differential equations in the weak selection limit, note
that there are alternative ways of arriving at Eqs. (1.18) and (1.23) which do not rely on this
approximation—see, e.g., Lande (1982) for a derivation which assumes that the populations are at
their stable age structure. The results are therefore expected to hold even when selection is not very
weak.

2 A quantitative genetic Lotka–Volterra model

2.1 Dynamical equations

The Lotka–Volterra model for S species is defined by the per capita growth rates

r(~N,~p,z, t) = b(z)−
S

∑
j=1

N j(t)
∫

a(z,z′)p j(z′, t)dz′, (2.1)

where b(z) and a(z,z′) are appropriately chosen functions for the intrinsic growth rate of phenotype
z and the interaction coefficient between phenotypes z and z′, respectively. The summation over
species and the integral across all phenotypes means that every individual with phenotype z interacts
with all other individuals in the community. This particular formulation of the Lotka–Volterra model



Intraspecific variation and community pattern Ecology Letters (2016) 19:977-986 Page 24

is special in the sense that growth and interactions only depend on the phenotype z but not on species
identity. In other words, two individuals of two different species are exchangeable without altering
the growth rates. Note that this is only true in the context of the interaction structure defined by
Eq. (2.1): species identity does matter in the context of reproduction in the quantitative genetic limit,
where the shape of the trait distributions must be maintained to match Eq. (1.5).

We can substitute Eq. (2.1) into Eqs. (1.18) and (1.23) to obtain the dynamics. Starting with
Eq. (1.18), we have

dNi(t)
dt

= Ni(t)
∫

ri(~N,~p,z, t)pi(z, t)dz

= Ni(t)
∫

pi(z, t)

(
b(z)−

S

∑
j=1

N j(t)
∫

a(z,z′)p j(z′, t)dz′
)

dz.
(2.2)

Introducing the notation

bi(t) =
∫

pi(z, t)b(z)dz, (2.3)

αi j(t) =
∫∫

pi(z, t)a(z,z′)p j(z′, t)dz′dz, (2.4)

we can write

dNi(t)
dt

= Ni(t)

(∫
pi(z, t)b(z)dz

︸ ︷︷ ︸
bi(t)

−
S

∑
j=1

N j(t)
∫∫

pi(z, t)a(z,z′)p j(z′, t)dz′dz
︸ ︷︷ ︸

αi j(t)

)

= Ni(t)

(
bi(t)−

S

∑
j=1

αi j(t)N j(t)

)
.

(2.5)

The interpretation of bi(t) is the population-level intrinsic growth rate of species i, while αi j(t) is
the population-level competitive effect of species j on species i.

Similarly, Eq. (1.23) will read

dµi(t)
dt

= h2
i

∫
(z−µi(t))ri(~N,~p,z, t)pi(z, t)dz

= h2
i

∫
(z−µi(t))pi(z, t)

(
b(z)−

S

∑
j=1

N j(t)
∫

a(z,z′)p j(z′, t)dz′
)

dz.
(2.6)

Again, after introducing

bi(t) =
∫
(z−µi(t))pi(z, t)b(z)dz, (2.7)

βi j(t) =
∫∫

(z−µi(t))pi(z, t)a(z,z′)p j(z′, t)dz′dz, (2.8)
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we get

dµi(t)
dt

= h2
i

∫
(z−µi(t))pi(z, t)b(z)dz

︸ ︷︷ ︸
bi(t)

−h2
i

S

∑
j=1

N j(t)
∫∫

(z−µi(t))pi(z, t)a(z,z′)p j(z′, t)dz′dz
︸ ︷︷ ︸

βi j(t)

= h2
i

(
bi(t)−

S

∑
j=1

βi j(t)N j(t)

)
.

(2.9)

Here bi(t) quantifies the selective pressure on the trait mean of species i caused by growth, and
βi j(t) the selective pressure on the trait mean of species i caused by competition with species j.

Writing out the final results, the following system of differential equations describes the eco-
evolutionary dynamics under Lotka–Volterra competition in the quantitative genetic limit:

dNi(t)
dt

= Ni(t)

(
bi(t)−

S

∑
j=1

αi j(t)N j(t)

)
, (2.10)

dµi(t)
dt

= h2
i

(
bi(t)−

S

∑
j=1

βi j(t)N j(t)

)
. (2.11)

2.2 The Jacobian of the quantitative genetic Lotka–Volterra model

The Jacobian of the dynamical equations Eqs. (2.10) and (2.11) is

Jik =
∂
(

dNi
dt ,

dµi
dt

)

∂ (Nk, µk)
. (2.12)

We can calculate its entries block-by-block:

∂ (dNi/dt)
∂Nk

= δik

(
bi−

S

∑
j=1

αi jN j

)
−Niαik,

∂ (dNi/dt)
∂ µk

= Ni

(
∂bi

∂ µk
−

S

∑
j=1

∂αi j

∂ µk
N j

)
= Ni

(
∂bi

∂ µk
δik−

S

∑
j 6=i

(
δik +δ jk

)∂αi j

∂ µk
N j

)
,

∂ (dµi/dt)
∂Nk

=−h2
i βik,

∂ (dµi/dt)
∂ µk

= h2
i

(
∂bi

∂ µk
−

S

∑
j=1

∂βi j

∂ µk
N j

)
= h2

i

(
∂bi

∂ µk
δik−

S

∑
j=1

(
δik +δ jk

)∂βi j

∂ µk
N j

)
,

(2.13)

where δi j is the Kronecker symbol, equal to 1 if i = j and to 0 otherwise. Here we used the fact that
bi and bi only depend on µi but not on µk 6=i; similarly, αi j and βi j only depend on µi and µ j but not
on µk 6=i, j.
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Collecting everything in a block-matrix, we get

Jik =




δik

(
bi−

S

∑
j=1

αi jN j

)
−Niαik Ni

(
∂bi

∂ µk
δik−

S

∑
j 6=i

(
δik +δ jk

)∂αi j

∂ µk
N j

)

−h2
i βik h2

i

(
∂bi

∂ µk
δik−

S

∑
j=1

(
δik +δ jk

)∂βi j

∂ µk
N j

)



. (2.14)

For S coexisting species, the equilibrium condition for the abundances can be expressed from
Eq. (2.10) as the solution to

bi =
S

∑
j=1

αi jN̂ j, (2.15)

where the hat denotes equilibrium values. When evaluating the Jacobian at this equilibrium, the first
term of the top left block cancels and we are left with

∂ (dNi/dt)
∂Nk

∣∣∣∣
N̂
=−N̂iαik. (2.16)

This is the community matrix (Levins 1968, May 1973), which we will denote with M:

Mik =−N̂iαik. (2.17)

2.3 Parameterizing the quantitative genetic Lotka–Volterra model

In this section, we choose the functional forms of the quantitative genetic Lotka–Volterra model’s
ingredient functions in three alternative ways. First, as a common point across all three parameteri-
zations, we choose a Gaussian interaction kernel that depends only on trait difference and not on the
actual trait values themselves (homogeneous function):

a(z,z′) = exp
(
−(z− z′)2

ω2

)
. (2.18)

Here ω determines the width of the kernel. We can now calculate αi j(t) and βi j(t) by direct
integration, using Eqs. (2.4) and (2.8):

αi j(t) =
ω√

2σ2
i +2σ2

j +ω2
exp

(
− (µi(t)−µ j(t))

2

2σ2
i +2σ2

j +ω2

)
, (2.19)

βi j(t) =−
2ωσ2

i (µi(t)−µ j(t))(
2σ2

i +2σ2
j +ω2

)3/2 exp

(
− (µi(t)−µ j(t))

2

2σ2
i +2σ2

j +ω2

)
. (2.20)

For b(z), we use three alternative forms, each expressing different biological scenarios.

I. b(z) rectangular:

b(z) =

{
1 if −θ ≤ z≤ θ ,
0 otherwise.

(2.21)
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This function equals one in [−θ , θ ] and zero outside. Therefore, an individual with phenotype
z can thrive equally efficiently within those limits but is suddenly unable to thrive at all outside.
With b(z) specified, the integrals for bi(t) and bi(t), given in Eqs. (2.3) and (2.7), evaluate to

bi(t) =
1
2

[
erf
(

θ −µi(t)√
2σi

)
+ erf

(
θ +µi(t)√

2σi

)]
, (2.22)

bi(t) =
σi√
2π

exp
(
−(θ +µi(t))2

2σ2
i

)[
1− exp

(
2θ µi(t)

σ2
i

)]
. (2.23)

II. b(z) quadratic:

b(z) =

{
1− z2/θ 2 if −θ ≤ z≤ θ ,
0 otherwise.

(2.24)

This function decreases quadratically from its maximum at z = 0 and becomes zero at z =±θ .
This means that there is a tradeoff between trait magnitude and performance: more extreme
trait values have lower growth rates. Integrating for bi(t) and bi(t) using Eqs. (2.3) and (2.7),
we get

bi(t) =
1

2θ 2 exp
(
−θ 2 +µ2

i (t)
σ2

i

){
exp
(

θ 2 +µ2
i (t)

σ2
i

)(
θ 2−σ2

i −µ2
i (t)

)

×
[

erf
(

θ −µi(t)√
2σi

)
+ erf

(
θ +µi(t)√

2σi

)]
(2.25)

+

√
2
π

σi exp

(
(θ −µi(t))

2

2σ2
i

)[
θ +(θ +µi(t))exp

(
2θ µi(t)

σ2
i

)
−µi(t)

]}
,

bi(t) = −
σ2

i

θ 2 exp
(
−θ 2 +µ2

i (t)
σ2

i

){
µi(t)exp

(
θ 2 +µ2

i (t)
σ2

i

)

×
[

erf
(

θ −µi(t)√
2σi

)
+ erf

(
θ +µi(t)√

2σi

)]
(2.26)

+

√
2
π

σi

[
exp

(
(θ −µi(t))

2

2σ2
i

)
− exp

(
(θ +µi(t))

2

2σ2
i

)]}
.

III. b(z) triangular:

b(z) =





z+θ
2θ

if −θ ≤ z≤ θ ,

0 otherwise.
(2.27)

This function increases linearly from zero to one in the interval [−θ , θ ] and is zero outside.
As in the quadratic case, there is a tradeoff between trait value and performance, but it is
asymmetric: smaller trait values are always less viable than larger ones in the region [−θ , θ ].
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Using Eqs. (2.3) and (2.7), bi(t) and bi(t) evaluate to

bi(t) =
θ +µi(t)

4θ

[
erf
(

θ −µi(t)√
2σi

)
+ erf

(
θ +µi(t)√

2σi

)]

− σi

4θ

√
2
π

exp
(
−(θ +µi(t))2

2σ2
i

)[
exp
(

2θ µi(t)
σ2

i

)
−1
]
, (2.28)

bi(t) =
σ2

i

4θ

[
erf
(

θ −µi(t)√
2σi

)
+ erf

(
θ +µi(t)√

2σi

)]
− σi√

2π
exp
(
−(θ −µi(t))2

2σ2
i

)
. (2.29)

Substituting the results of either parameterization into Eqs. (2.10) and (2.11), the model is fully
specified up to choosing numerical values for the parameters.

3 Two-species results

Here we use the quantitative genetic Lotka–Volterra model as described above in Section 2, except
we do not specify b(z) in any particular way unless noted otherwise. We set the number of species S
to two.

3.1 The ecological equilibrium and its stability

Let us consider just the ecological part of the dynamics. The equilibrium condition is given by
setting Eq. (2.10) to zero. Requiring that the equilibrium densities be nonzero, we have, for S = 2,

bi =
2

∑
j=1

αi jN̂ j, (3.1)

where the hat denotes equilibrium values. The solution for the N̂i is obtained by multiplying both
sides with the inverse of the matrix αi j:

N̂i =
2

∑
j=1

(
α−1)

i jb j. (3.2)

Assuming that the equilibrium described by Eq.(3.2) is feasible (i.e., all equilibrium abundances
are positive), its global stability can be established. Writing out αi j using Eq. (2.19), we get

αi j = ω




1√
4σ2

1 +ω2

exp
(
−d2

(
2σ2

1 +2σ2
2 +ω2

)−1
)

√
2σ2

1 +2σ2
2 +ω2

exp
(
−d2

(
2σ2

1 +2σ2
2 +ω2

)−1
)

√
2σ2

1 +2σ2
2 +ω2

1√
4σ2

2 +ω2




, (3.3)

where d = |µ1− µ2| is the distance between the species’ mean traits. This matrix is symmetric
(implying that both eigenvalues are real), and purely competitive. Then, due to the classic theorem of
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MacArthur (1970), global stability of the equilibrium Eq. (3.2), if it exists, is guaranteed as long as
−αi j has strictly negative eigenvalues. This in turn will hold if the trace and determinant of −αi j are
negative and positive, respectively (Routh–Hurwitz criteria; Edelstein-Keshet 1988). The trace of
−αi j is trivially negative. To show that the determinant ∆ = det(−αi j) = (−1)2 det(αi j) = det(αi j)
is positive, we calculate it using Eq. (3.3):

∆ = α11α22−α12α21 = ω2


 1√(

4σ2
1 +ω2

)(
4σ2

2 +ω2
) −

exp
(
−2d2

(
2σ2

1 +2σ2
2 +ω2

)−1
)

2σ2
1 +2σ2

2 +ω2


.

(3.4)
The exponential expression in the numerator of the second term is less than or equal to one. Notice
that the larger this exponent is, the smaller the determinant will be. Assuming therefore, as a
worst-case scenario, that it is precisely equal to one (i.e., d = 0), the determinant ∆ will be positive
as long as the denominator of the first term is smaller than the denominator of the second:

√(
4σ2

1 +ω2
)(

4σ2
2 +ω2

)
< 2σ2

1 +2σ2
2 +ω2. (3.5)

Taking the square of both sides, rearranging, and simplifying, we get 0<
(
σ2

1 −σ2
2
)2 as the condition

for the positivity of the determinant, which is always satisfied except when σ1 = σ2. This establishes
that any feasible equilibrium given by Eq. (3.2) will be globally stable unless d = 0 and σ1 = σ2
simultaneously.

3.2 Robustness and feasibility

The sensitivity of the equilibrium densities in Eq. (3.2) to perturbations of the bi and αi j depends
on the determinant ∆. Since the N̂i are proportional to the inverse of αi j, and the inverse of a
matrix is in turn proportional to the inverse of its determinant, a small ∆ means that a large number
will multiply any perturbation of the parameters, causing a sudden, large shift in the equilibrium
densities, increasing the risk of extinction (Meszéna et al. 2006, Barabás et al. 2014b). We should
therefore see what the effect of intraspecific variation is on the determinant of αi j.

In the limit of no intraspecific variation (σ1 = σ2 = 0), the determinant in Eq. (3.4) reduces to

∆0 = 1− exp
(
−2d2/ω2). (3.6)

We can compare the determinant ∆ of the two-species system with that of the exact same system,
except that we set σ1 and σ2 to zero. This is effectively a comparison of the system’s robustness
with- and without intraspecific variability.

Figure 1 shows both ∆0 and ∆ separately (left) as well as the ratio of ∆ to ∆0 (right) as a function
of the mean trait difference d, for various values of the intraspecific variance σ2

2 . What we see
is that for large d the ∆/∆0 ratios asymptote, at smaller values for larger levels of intraspecific
variation and always below one. This means that for d → ∞, intraspecific variation makes the
two-species system more sensitive to parameter perturbations than it would be in the absence
of such variation. This can be understood in the following way: as the distance between the
species grows very large, the interspecific species interactions become negligible. Indeed, from
Eq. (3.3) we see that α12 and α21 approach zero as d→ ∞. Then, the two species decouple into two
independent species following logistic growth, whose sensitivity depends on the strength of their
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Figure 1: The dependence of robustness on mean trait distance and intraspecific variability. For all curves,
ω = 1.1. For all curves except the black dashed line on the left, σ1 = 1. Left: robustness, as measured by
∆ = det(αi j). The dashed black line is the reference case with no intraspecific variation: σ1 = σ2 = 0. For all
solid curves, σ1 = 1 and colors denote different values of σ2 (see legend). Except for very small differences
in mean trait, the case with no intraspecific variation leads to the greatest robustness. Intraspecific variation
therefore promotes the coexistence of tightly packed species, but only if their σs are sufficiently different.
Right: the ratio of the determinants with- and without intraspecific variation, ∆/∆0 The ratio is approximately
constant but lower than one for d large, decreases slightly for d commensurable with the intraspecific standard
deviations, and approaches infinity as d→ 0.

intraspecific interactions α11 and α22: the stronger the self-regulation, the smaller the sensitivity
due to an increased determinant. Again, from Eq. (3.3) we see that the diagonal terms get smaller
with increasing σ1 and σ2. Intuitively, this is because for σi small, all individuals have the same
phenotype and therefore compete strongly, whereas for σi large, different individuals of the same
species avoid competition by sufficiently differing in their phenotypes.

In contrast, as d approaches zero, ∆/∆0 goes to infinity except when σ1 = σ2. Mathematically,
this is because ∆0 always approaches zero as d→ 0, but ∆ will only do so if σ1 = σ2. This can
be understood in terms of Figure 2. If the variances of the two species differ (left), the species
with the higher variance will have nonoverlapping individuals with the other species, thus reducing
interspecific competition—a phenomenon known as phenotypic subsidy (Bolnick et al. 2011). But if
there is no variation or the two variances are very similar (right), the two species compete maximally.
On the left, the yellow species is a generalist while the blue species is a specialist; this arrangement
allows for stable coexistence despite the fact that the two trait means precisely coincide.

The final interesting aspect of Figure 1 is that the determinant ratio ∆/∆0 does not vary mono-
tonically with d, but instead has a minimum at some intermediate distance (except when σ1 = σ2).
At this distance, some individuals are completely overlapping in their traits, and some are farther
away than expected based on the mean trait alone. However, due to the nonlinear dependence of
competition on trait distance (Eq. 2.18, Figure 2), overlapping individuals have a greater impact on
coexistence than distant ones. This effect disappears when the distance gets so large that there is no
longer any appreciable trait overlap between heterospecific individuals.
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Figure 2: Left: The intensity of interspecific competition between two species with the same mean trait
is lowered if their trait variances are different. The reason is that the species with the higher variance has
individuals that do not overlap with individuals of the the other species. Right: when two species with the
same mean trait have very similar intraspecific variances, the overlap in individuals is not reduced substantially,
leading to nonrobust coexistence. The dashed gray line indicates the species’ mean trait position.

In summary, the sensitivity of coexistence to parameter perturbations is in general heightened
by intraspecific variation, except when the mean traits of the two species are very close. In that case,
stable and robust coexistence is possible even when the mean traits are identical (d = 0).

There is an alternative way of characterizing the robustness of coexistence and its dependence
on intraspecific variation. We could ask: for two species with given trait means and variances, what
is the fraction of different growth rate vectors (b1, b2) out of all possible combinations leading to
a stable and feasible (all-positive) equilibrium? Since it was established in Section 3.1 that any
feasible equilibrium will automatically be globally stable, we can concentrate just on feasibility.
First, note that in Lotka–Volterra models only the direction of the vector of intrinsic growth rates
matters, but not its magnitude. Indeed, from the equilibrium equations Eq. (3.2), multiplying all bi

values by a positive constant η simply rescales the equilibrium densities by η as well, therefore
feasibility is unaffected. Second, the well-known conditions for feasibility in two-species competitive
Lotka–Volterra systems read

α12

α22
<

b1

b2
<

α11

α21
(3.7)

(e.g., Vandermeer 1975, Mallet 2012). These conditions can be written in a slightly different, more
geometric form: since only the direction of the intrinsic rates matters, we can parameterize them
as b1 = cosφ , b2 = sinφ . Then the vector (b1, b2) has length 1, and 0 < φ < π/2 is the angle
measured counterclockwise from the abscissa of the plane of possible intrinsic growth rate vectors.
Substituting this into Eq. (3.7) and simplifying, we get

arctan
(

α21

α11

)
< φ < arctan

(
α22

α12

)
. (3.8)
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Figure 3: The range of angles of the intrinsic growth rate vector (b1, b2) (measured counterclockwise from
the abscissa) allowing for two-species coexistence as a function of mean trait distance, for various values
of intraspecific variability σ2 (see legend). Here σ1 = 1 and ω = 1.1. Lines denote the lower and upper
boundaries of the shaded coexistence region. The black region with dashed boundaries is the reference case
with no intraspecific variability: σ1 = σ2 = 0. Unless mean trait differences are very small, the case without
intraspecific variation always leads to a larger feasibility domain.

Using Eq. (3.3), this reads

arctan

(
e
− d2

2σ2
1 +2σ2

2 +ω2

√
4σ2

1 +ω2

2σ2
1 +2σ2

2 +ω2

)
< φ < arctan

(
e

d2

2σ2
1 +2σ2

2 +ω2

√
2σ2

1 +2σ2
2 +ω2

4σ2
2 +ω2

)
, (3.9)

fully characterizing the set of parameters compatible with coexistence as a function of the trait
means and variances (Figure 3).

We can also express the fraction of φ values leading to feasibility, out of all possible values
0 < φ < π/2, by rearranging the above inequalities. Calling this fraction Ξ, we get

Ξ =
2
π

[
arctan

(
e

d2

2σ2
1 +2σ2

2 +ω2

√
2σ2

1 +2σ2
2 +ω2

4σ2
2 +ω2

)
− arctan

(
e
− d2

2σ2
1 +2σ2

2 +ω2

√
4σ2

1 +ω2

2σ2
1 +2σ2

2 +ω2

)]
.

(3.10)
In the absence of intraspecific variation (σ1 = σ2 = 0), this simplifies to

Ξ0 =
2
π

[
arctan

(
ed2/ω2

)
− arctan

(
e−d2/ω2

)]
(3.11)

The feasibility domains Ξ and Ξ0 as well as their ratio may be plotted just as the determinants were
(Figure 4). The exact same qualitative picture emerges as before. A quantitative difference is that
Ξ/Ξ0 always asymptotes at one for d→∞, whereas the determinant ratios do not. The reason is that
when the two species are sufficiently far apart they decouple into two independent logistic species,
with feasibility ensured for any positive intrinsic growth rate, regardless of intraspecific variation.
The ratio of the two feasibility domains is therefore equal to one for d large.
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Figure 4: As Figure 1, but plotting the fraction of feasible parameter space Ξ (left) and the ratios Ξ/Ξ0 (right).
The qualitative picture is the same as before, except all feasibility ratios converge to one for d large. This is
because as d→ ∞, the interspecific interaction coefficients approach zero, and the system decouples into two
independent, logistically growing species. Any single species following logistic growth is viable as long as its
intrinsic growth rate is positive, regardless of whether there is any intraspecific variability. Therefore, the
feasibility ratios with- and without intraspecific variation converge to one as d increases.

3.3 The eco-evolutionary dynamics

For a single species, the eco-evolutionary dynamics given by Eqs. (2.10) and (2.11) is sim-
ple. The equilibrium density is the solution to dN/dt = N(b−αN) = 0, yielding N̂ = b/α =
b
√

1+(2σ/ω)2, where Eq. (2.19) was used to express α = αii. This solution is feasible as long as
b is positive. The evolutionary dynamics reads dµ/dt = h2(b−βN). Unless h2 = 0, the evolutionary
equilibrium is given by b = β N̂, but since β = βii = 0 from Eq. (2.20), we are left with b = 0. That
is, any of the roots of b may serve as evolutionary fixed points depending on initial conditions; local
stability is ensured by b having a negative slope at the corresponding root as a function of the mean
trait µ .

For two species, Figures 5 and 6 show different scenarios with stable coexistence. In the first
example the two species experience character divergence, while in the second the evolutionarily
stable strategy involves both species having equal mean trait values. Of course, whether we see the
convergence or divergence of the mean traits also depends on initial conditions (imagine Figure 5
with initial conditions µ1(0) =−5, µ2(0) = 5). However, it is of special interest to see when one
can expect the perfect convergence of the two species’ mean traits.

To this end, let us assume that the two species have an evolutionary equilibrium at µ1 = µ2 = 0;
this can be achieved by choosing b(z) to be symmetric around z = 0. In that case, bi is zero because
Eq. (2.7) reduces to the integral of the product of symmetric and antisymmetric functions, and βi j is
also zero by Eq. (2.20). Then, from Eq. (2.11), we see that µ1 = µ2 = 0 is indeed an evolutionary
equilibrium. We will also assume equal heritabilities (h2

1 = h2
2 = h2), and that b(z) is nonnegative.
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Figure 5: Left panel: population densities of the two species in time. Right panel: the mean trait of the
two species in time; the shaded regions mark the ±σi regions around the mean. The two species diverge in
their mean traits, ending up with coexistence in line with classical limiting similarity. We use the rectangular
growth function (Section 2.3) with parameter values θ = 0.5, ω = 0.1, h2

1 = h2
2 = 0.5, σ1 = 0.1, σ2 = 0.15,

and initial conditions N1(0) = 1, N2(0) = 1, µ1(0) =−0.2, µ2(0) = 0.1.
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Figure 6: As Figure 5, except with σ1 = 0.3 and σ2 = 0.45 (they are both three times what they were before).
The mean traits now converge to be equal, but because the intraspecific variances are different, the blue
species is a specialist and the yellow is a generalist. The example demonstrates that the evolutionary outcome
can be changed from character divergence to convergence simply by rescaling the intraspecific standard
deviations.

We can write out the Jacobian J for two species, using Eq. (2.14):

J =




b1−2α11N1−α12N2 −α12N1 N1
∂b1
∂ µ1

−N1N2
∂α12
∂ µ1

−N1N2
∂α12
∂ µ2

−α21N2 b2−α21N1−2α22N2 −N1N2
∂α21
∂ µ1

N2
∂b2
∂ µ2

−N1N2
∂α21
∂ µ2

−h2β11 −h2β12 h2
(

∂b1
∂ µ1

−2N1
∂β11
∂ µ1

−N2
∂β12
∂ µ1

)
−h2N2

∂β12
∂ µ2

−h2β21 −h2β22 −h2N1
∂β21
∂ µ1

h2
(

∂b2
∂ µ2

−N1
∂β21
∂ µ2

−2N2
∂β22
∂ µ2

)



. (3.12)
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At the (stable or unstable) evolutionary equilibrium µ1 = µ2 = 0, further simplifications are available:
β11 = β22 = 0, and ∂αi j/∂ µk = 0 for all i, j,k = 1,2. Also, since b(z) is symmetric, it has an
extremum around z = 0. Then, by Eq. (2.3), so does bi around µi = 0:

∂bi

∂ µi
=

∂
∂ µi

∫
pi(z)b(z)dz =

∫ ∂ pi(z)
∂ µi

b(z)dz, (3.13)

which, for µi = 0, is the integral of the product of an antisymmetric and a symmetric function,
evaluating to zero. Therefore, ∂bi/∂ µ j = 0 for all i, j = 1,2. We then have

J =




b1−2α11N1−α12N2 −α12N1 0 0

−α21N2 b2−α21N1−2α22N2 0 0

0 0 h2
(

∂b1
∂ µ1

−2N1
∂β11
∂ µ1

−N2
∂β12
∂ µ1

)
−h2N2

∂β12
∂ µ2

0 0 −h2N1
∂β21
∂ µ1

h2
(

∂b2
∂ µ2

−N1
∂β21
∂ µ2

−2N2
∂β22
∂ µ2

)



, (3.14)

which is the direct sum of two independent 2×2 blocks—the top block corresponds to the dynamics
of the densities, the bottom one to the trait means. Therefore, in this case the dynamics of the local
abundances and trait means are decoupled, making the analysis much simpler. As we have shown in
Section 3.1, the top 2×2 block of the Jacobian is necessarily stable when −αi j is symmetric and all
its entries are negative; this block describes meaningful coexistence when the feasibility condition
Eq. (3.7) is also satisfied.

Local stability of the bottom 2×2 block of Eq. (3.14) would mean that the two species experience
convergent evolution, at least in the vicinity of µ1 = µ2 = 0. Using Eq. (3.2) for the equilibrium
densities, one can calculate the two eigenvalues to determine whether the µ1 = µ2 = 0 evolutionary
equilibrium is stable; both eigenvalues having negative real parts means stability. Equivalently, one
may use the Routh–Hurwitz criteria (Edelstein-Keshet 1988): any 2×2 matrix is stable if and only
if its trace is negative while its determinant is positive.

We introduce some simplifying notation. Let the bottom 2× 2 block of J be J(µ). Also, for
any quantity x, let x̃ = x/ω , i.e., we measure quantities in units of ω whenever appropriate, thus
eliminating one of the variables. Let b

′
i = ∂bi/∂ µi evaluated at µi = 0, and let

si =
√

1+4σ̃2
i , (3.15)

si j =
√

1+2σ̃2
i +2σ̃2

j . (3.16)

Writing αi j and βi j using Eqs. (2.19) and (2.20) at µ1 = µ2 = 0, we can evaluate J(µ) at the
equilibrium densities N̂1 and N̂2:

J(µ) = h2




b
′
1 +2N̂2σ̃2

1 /s3
12 −2N̂2σ̃2

1 /s3
12

−2N̂1σ̃2
2 /s3

12 b
′
2 +2N̂1σ̃2

2 /s3
12


. (3.17)

The first Routh–Hurwitz criterion is that the trace of this matrix should be negative:

tr(J(µ)) = h2
(

b
′
1 +b

′
2 +2

N̂2σ̃2
1 + N̂1σ̃2

2

s3
12

)
< 0. (3.18)
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Rearranging, we get
N̂2σ̃2

1 + N̂1σ̃2
2

s3
12

+
b
′
1 +b

′
2

2
< 0. (3.19)

Similarly, the second Routh–Hurwitz criterion is that the determinant should be positive:

det(J(µ)) = h4
((

b
′
1 +2N̂2σ̃2

1 /s3
12

)(
b
′
2 +2N̂1σ̃2

2 /s3
12

)
− 4N̂1N̂2σ̃2

1 σ̃2
2

s6
12

)
> 0, (3.20)

or
b
′
1b
′
2

2
+

σ̃2
1 N̂2b

′
2 + σ̃2

2 N̂1b
′
1

s3
12

> 0. (3.21)

Note that b
′
i is necessarily negative: b

′
i =−|b

′
i|. Indeed, using the definition in Eq. (2.7),

∂bi

∂ µi
=

∂
∂ µi

∫
(z−µi)pi(z)b(z)dz =

∫ [∂ (z−µi)

∂ µi
pi(z)b(z)+(z−µi)

∂ pi(z)
∂ µi

b(z)
]

dz, (3.22)

which, using Eq. (1.5) and evaluating at µi = 0, reads

b
′
i =

∂bi

∂ µi

∣∣∣∣
µi=0

=−
∫

pi(z)b(z)dz− 1
σ2

i

∫
z2 pi(z)b(z)dz. (3.23)

Both integrals are over products of positive functions; with the negative sign, the expression as a
whole is negative. This shows that b

′
i is necessarily negative.

The equilibrium densities N̂1 and N̂2 can be calculated from Eq. (3.2). The αi j are given by
Eq. (3.3) with d = |µ1−µ2|= 0 which, using Eqs. (3.15) and (3.16), can be written

αi j =

(
1/s1 1/s12
1/s12 1/s2

)
. (3.24)

Inverting this matrix, we get

(
α−1)

i j =
s1s2s2

12

s2
12− s1s2

(
1/s2 −1/s12
−1/s12 1/s1

)
. (3.25)

Substituting this inverse into Eq. (3.2), we can express the two equilibrium densities:

N̂1 =
s1s12(b1s12−b2s2)

s2
12− s1s2

, (3.26)

N̂2 =
s2s12(b2s12−b1s1)

s2
12− s1s2

. (3.27)

Substituting these into the Routh–Hurwitz criteria in Eqs. (3.19) and (3.21), we get

|b′1|+ |b
′
2|

2
>

σ̃2
1 s2(b2s12−b1s1)+ σ̃2

2 s1(b1s12−b2s2)

s2
12(s

2
12− s1s2)

, (3.28)

|b′1||b
′
2|

2
>

σ̃2
1 s2(b2s12−b1s1)|b′2|+ σ̃2

2 s1(b1s12−b2s2)|b′1|
s2

12(s
2
12− s1s2)

. (3.29)
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Eq. (3.28) has the biological interpretation that the average slope of the bi near µ = 0 has to be
sufficiently large in magnitude for character convergence to happen. However, the slopes cannot
be large when the intraspecific standard deviations are either too small or too large. This is easily
verified: for σi → ∞ the integral in Eq. (2.7) converges to zero for all µi because the density of
an infinitely wide Gaussian pi(z) is vanishing at all points (and so the integral’s derivative with
respect to µi is also zero), while for σi→ 0 the trait distribution pi(z) converges to the Dirac delta
distribution δ (z−µi) and so, using Eq. (2.7),

b
′
i =

∂
∂ µi

∫
(z−µi)δ (z−µi)b(z)dz

∣∣∣∣
µi=0

=
∂

∂ µi
(0×b(µi)) = 0. (3.30)

Then, due to continuity in σi, very small or very large phenotypic standard deviations imply
small values of |b′i|. Its maximum is therefore obtained somewhere in between, when σ̃i ≈ θ̃ .
Biologically, this means that the intraspecific standard deviations can be neither simultaneously too
small nor simultaneously too large compared with the width of b(z), otherwise we do not observe the
convergence of the mean traits. Using Eqs. (3.28) and (3.29), Figure 7 shows the precise parameter
region where one obtains convergent evolution, for the case of the rectangular growth function
(Section 2.3).

Of course, evolutionary convergence does not guarantee that both species can maintain positive
densities at the evolutionary equilibrium µ1 = µ2 = 0. For that, the ecological equilibrium must
be locally stable and feasible. As discussed before, the top 2×2 block of J is necessarily stable,
therefore the only question is that of feasibility. The two-species feasibility condition is given by

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
σ1 ω

σ 2
ω

Figure 7: Region of convergent evolution (blue strip) as a function of the scaled intraspecific standard
deviations σ̃1 and σ̃2. The growth function is rectangular (Section 2.3); the value of θ̃ is set to 5. The blue
region shows where the Routh–Hurwitz criteria of Eqs. (3.28) and (3.29) are satisfied; i.e., in this region the
species evolve identical mean traits. In general, if one standard deviation is high, then the other must be
intermediate to get the evolution of the mean traits, resulting in a generalist and a specialist species.
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Eq. (3.7); for the rectangular growth function (Section 2.3), this reads

1+4σ̃2
2

1+2σ̃2
1 +2σ̃2

2
<

erf2
(

θ̃/(
√

2σ̃1)
)

erf2
(

θ̃/(
√

2σ̃2)
) <

1+2σ̃2
1 +2σ̃2

2

1+4σ̃2
1

. (3.31)

In particular, these inequalities are very difficult to satisfy when σ̃1 ≈ σ̃2, and become impossible to
do so for σ̃1 = σ̃2. In order to observe trait convergence which also ends up in ecological coexistence,
one therefore needs sufficient segregation of the species in their intraspecific standard deviations.
Roughly speaking, one species must be a generalist and the other a specialist consumer.

The robust possibility of convergent trait evolution points to the fact that measuring species
similarity purely on the basis of trait means can be misleading. Coexistence can result from
segregation along the trait axis (Figure 5), but also from having similar mean traits but different
intraspecific standard deviations (Figure 6). Limiting similarity in the classical sense (MacArthur
and Levins 1967) therefore has to be extended in the presence of intraspecific trait variation: its
naive application to the trait means without taking the variances into account may lead to the
incorrect conclusion that two species coexist without niche segregation, when they are in fact
niche-segregated.

3.4 Robustness of the two-species results to an asymmetry in intrinsic growth

How sensitive are our results to breaking the perfect symmetry of the intrinsic growth function
b(z)? To examine this, let us introduce an asymmetry in b(z) to see if we can still get character
convergence. The difficulty with doing this lies in the fact that, after perturbing b(z), one has to
recalculate bi(t) and bi(t) via Eqs. (2.3) and (2.7). Unfortunately, these integrals cannot in general
be evaluated in explicit form, except in certain very simple cases.

The idea for introducing asymmetry in a tractable way is to assume that it is small, so one can
expand it to linear order. Instead of the original bi(t) given by Eq. (2.3), we use the perturbed

b∗i (t) =
∫

b(z)(1+η(z))pi(z, t)dz. (3.32)

If the perturbing function η(z) is small and has a nonvanishing first moment, then we can Taylor
expand it as η(z) ≈ cz, where c is a constant (we choose η such that the 0th-order term in the
expansion is zero). We then can write

b∗i (t)≈
∫

b(z)(1+ cz)pi(z, t)dz = bi(t)+ c
∫

zb(z)pi(z, t)dz

= bi(t)+ c
∫
(z−µi(t))b(z)pi(z, t)dz+ cµi(t)

∫
b(z)pi(z, t)dz

= (1+ cµi(t))bi(t)+ cbi(t).

(3.33)

Similarly, instead of bi(t) given by Eq. (2.7), we have

b
∗
i (t)≈

∫
(z−µi(t))b(z)(1+ cz)pi(z, t)dz = bi(t)+ c

∫
z(z−µi(t))b(z)pi(z, t)dz

= bi(t)+ c
∫ [

(z−µi(t))
2 +µi(t)(z−µi(t))

]
b(z)pi(z, t)dz.

(3.34)
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Defining b̂i(t) as

b̂i(t) =
∫
(z−µi(t))

2b(z)pi(z, t)dz (3.35)

(i.e., the second central moment), we can continue writing

b
∗
i (t)≈ bi(t)+ c

∫ [
(z−µi(t))

2 +µi(t)(z−µi(t))
]
b(z)pi(z, t)dz

= bi(t)+ c
∫
(z−µi(t))

2b(z)pi(z, t)dz+ cµi(t)
∫
(z−µi(t))b(z)pi(z, t)dz

= (1+ cµi(t))bi(t)+ cb̂i(t).

(3.36)

The advantage of this approach is highlighted by the fact that b̂i(t) can be explicitly integrated,
depending on parameterization (Section 2.3):

I. b(z) rectangular:

b̂i(t) =
σ2

i

2

[
erf
(

θ −µi(t)√
2σi

)
+ erf

(
θ +µi(t)√

2σi

)]

+
1√
2π

exp
(
−(θ +µi(t))2

2σ2
i

)[
(µi(t)−θ)σi exp

(
2θ µi(t)

σ2
i

)
− (µi(t)+θ)σi

]
.

(3.37)

II. b(z) quadratic:

b̂i(t) =
σ2

i

2θ 2

{
(
θ 2−µ2

i (t)−3σ2
i
)[

erf
(

θ −µi(t)√
2σi

)
+ erf

(
θ +µi(t)√

2σi

)]

+

√
2
π

σi exp
(
−(θ +µi(t))2

2σ2
i

)[
(3θ +µi(t))exp

(
2θ µi(t)

σ2
i

)
+3θ −µi(t)

]}
.

(3.38)
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Figure 8: As Figure 5, except with an asymmetry in the intrinsic growth function b(z)(1+ cz), with c = 0.1.
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Figure 9: As Figure 6, except with an asymmetry in the intrinsic growth function b(z)(1+ cz), with c = 0.1.

III. b(z) triangular:

b̂i(t) =
σ2

i

4θ
(θ +µi(t))

[
erf
(

θ −µi(t)√
2σi

)
+ erf

(
θ +µi(t)√

2σi

)]

+
σi√
2πθ

exp

(
−(θ +µi(t))

2

2σ2
i

)[
σ2

i − exp
(

2θ µi(t)
σ2

i

)(
θ 2 +σ2

i −θ µi(t)
)]
.

(3.39)

When the intraspecific standard deviations are low, then predictably, asymmetry does not alter
qualitative behavior, and we get the same result as before (Figure 8, which is much the same as
Figure 5 despite the added asymmetry). However, on Figure 9, which is set up just like Figure 6
plus the asymmetry, the two species no longer evolve the exact same mean trait. In and of itself,
this is not very surprising, because for b(z) asymmetric, µ1 = µ2 = 0 can no longer in general be
expected to be a fixed point of the evolutionary dynamics. However, the difference d = |µ1−µ2| in
mean traits is slight, especially compared with the two intraspecific standard deviations. This holds
even though the amount of introduced asymmetry is in fact not very small (Figure 10).

In summary, though the species no longer evolve the exact same mean trait as a stable evolu-
tionary outcome in the presence of asymmetry, it is nevertheless still true that, for sufficiently large
intraspecific standard deviations, the difference in their mean traits will be small compared to their
σs, and so it is still true that the two species represent a specialist and a generalist type.

4 Multispecies results

4.1 Multiple species with equal intraspecific variances and no heritability

Here we study a simple reference case for which an exact answer can be given to the question of how
intraspecific variability affects expected species richness. To this end, we make two assumptions.
First, all heritabilities are zero: intraspecific variation is purely plastic. Second, each species has the
same intraspecific standard deviation σ .
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Figure 10: Equilibrium state of two-species communities, with- and without asymmetry in intrinsic growth
(left and right panels, respectively). Both panels used the rectangular growth function (Section 2.3), and
parameter values θ = 5, ω = 1, h2

1 = h2
2 = 0.5, σ1 = 3, σ2 = 4.5, starting from initial conditions N1(0) = 1,

N2(0) = 1, µ1(0) =−2, µ2(0) = 1. The asymmetry parameter is set to c = 0 (left panel) and c = 0.1 (right
panel). The shaded regions are the density distributions of the two species at equilibrium as a function of trait
value. The dashed red line in each panel (not drawn to scale) is the intrinsic growth function b(z)(1+ cz),
where b(z) is given by Eq. (2.21). On the left, the two species evolve the same mean trait, but on the right
their alignment is not perfect due to the asymmetry.

The competition coefficients αi j are given by Eq. (2.19), which reduces to

αi j =
ω√

4σ2 +ω2
exp

(
−(µi−µ j)

2

4σ2 +ω2

)
(4.1)

when all the σs are equal. In the absence of intraspecific variation, the competition coefficients are
instead given by Eq. (2.18):

αi j = exp

(
−(µi−µ j)

2

ω2

)
, (4.2)

which can also be obtained by taking the σ → 0 limit in Eq. (4.1). If the heritabilities are zero, then
species do not evolve, and the only difference between the model with- and without intraspecific
variation is that the competition coefficients have a different form, given by Eqs. (4.1) and (4.2).

The number of coexisting species in a Lotka–Volterra trait axis model without intraspecific
trait variation is proportional to the inverse of the competition width ω in Eq. (4.2) (MacArthur
and Levins 1967, Szabó and Meszéna 2006, Scheffer and van Nes 2006, Barabás and Meszéna
2009), a rule of thumb that holds unless parameters are carefully (and unbiologically) fine-tuned
(Barabás et al. 2012). However, when all σs are equal, one can think of the model with intraspecific
variation as an effective model for a community without such variation, but with the modified
competition coefficients given by Eq. (4.1). The competition width of these effective coefficients is√

4σ2 +ω2. The ratio of predicted species richnesses with- and without intraspecific variation is
therefore ω/

√
4σ2 +ω2. Equivalently, we can also write 1/

√
4σ̃2 +1 for the ratio, where σ̃ = σ/ω .

Figure 11 compares this analytical prediction with simulation results, starting from the same initial
conditions and varying σ for two different values of ω .
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Figure 11: Comparison of the analytically predicted ratio of species richnesses with- and without intraspecific
variation, ω/

√
4σ2 +ω2 (blue curves) to simulated ones (red dots; obtained with the rectangular b(z) of

Section 2.3). Left panel: ω = 0.1; right panel: ω = 0.2. There is more scatter on the right because the average
number of species with ω = 0.2 is half the number with ω = 0.1. Since the number of coexisting species
must be an integer, rounding errors are expected to be larger when the number of species is small to begin
with.

The important conclusions about species richness are as follows. First, intraspecific variability
has an overall negative effect on species diversity. Second, this negative effect increases mono-
tonically with σ . Third, for very small amounts of intraspecific variability, there is practically no
effect, since 1/

√
4σ̃2 +1 ≈ 1 for σ̃ small. Fourth, for large σ̃ , 1/

√
4σ̃2 +1 ≈ (2σ̃)−1, therefore

the decline in species richness will be roughly inversely proportional to 2σ/ω .

4.2 Measuring community robustness

Local stability of an ecological community in the final state is guaranteed if the community matrix
Mi j =−N̂iαi j given in Eq. (2.17) has all its eigenvalues lying in the left half of the complex plane.
Here N̂i is the equilibrium density of species i, and the αi j are given by Eq. (2.19). The real part of
an eigenvalue measures the rate of decay (or amplification, if the real part is positive) of a dynamical
perturbation along the corresponding eigendirection; small negative real parts indicate slow return
times.

The eigenvalues of the community matrix are also related to the robustness of the community.
A robust system is one that does not change its qualitative behavior in response to parameter
perturbations. Intuitively, the reason the eigenvalues measure robustness is that their position in
the complex plane is a continuous function of model parameters. If an eigenvalue is close to the
imaginary axis, then even a small parameter perturbation may push it over to the right half plane,
destabilizing the system. More precisely, the magnitude of the community matrix’s determinant
is a measure of the local robustness of a deterministic dynamical system (Levins 1968, May 1973,
Levins 1974, Bender et al. 1984, Yodzis 1988, 2000, Dambacher et al. 2002, Meszéna et al. 2006,
Novak et al. 2011, Yeakel et al. 2011, Barabás et al. 2012, Aufderheide et al. 2013, Barabás et al.
2014a,b). The intuition about the eigenvalues measuring robustness is then justified by recognizing
that the determinant is the product of all eigenvalues. The Sth root of its absolute value is therefore
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the (geometric) mean of the eigenvalues’ moduli: denoting the ith eigenvalue of M by λi, we have

S
√
|det(M)|= S

√
|λ1 · . . . ·λS|= S

√
|λ1| · . . . · |λS|=

(
S

∏
i=1
|λi|
)1/S

= exp

(
1
S

log

(
S

∏
i=1
|λi|
))

= exp

(
1
S

S

∑
i=1

log(|λi|)
)

= exp
(

log(|λ |)
)
,

(4.3)

where the overbar denotes (arithmetic) averaging. This quantity can be interpreted as the geometric
mean of the return times along each eigendirection, which is especially useful for comparing the
robustness of systems with different numbers of species (Barabás et al. 2014b). The determinant
itself cannot be used for such comparisons, because its units are [time]−S, which will be different
for communities with different numbers of species. In contrast, the units of the geometric mean
are always [time]−1, comparable across systems. We call this quantity the “average community
robustness”.

There is another aspect to robustness. Imagine a two-species community whose community
matrix has eigenvalues λ1 = λ2 = −1. The geometric mean of their magnitudes is 1. Now take
another two-species system with eigenvalues λ1 =−100 and λ2 =−0.01. The geometric mean is
still equal to 1, but the situation is now very different. In the first example, the dynamics are equally
robust along both eigendirections. In the second, the first eigendirection is very robust, but the
second one is not robust at all. This indicates that this second system will be completely insensitive
to some types of parameter perturbations, but extremely sensitive to others. It is therefore also of
interest to see not just how robust a system is to the average environmental disturbance, but whether
it reacts strongly to specific disturbances. This can be measured by the geometric standard deviation
of the eigenvalues’ magnitudes:

exp
(√

log2(|λ |)− log(|λ |)2
)
= exp




√√√√1
S

S

∑
i=1

log2(|λi|)−
(

1
S

S

∑
i=1

log(|λi|)
)2

. (4.4)

We dub this quantity “robustness heterogeneity”, i.e., the degree to which the system’s eigendirec-
tions vary in their individual robustness.

4.3 The effect of intraspecific variation and heritability on species richness, trait
pattern, and community robustness

Here we show all our results generated using the rectangular b(z) given in Eq. (2.21), and the
triangular b(z) given in Eq. (2.27). The plots are analogous to Figures 4, 5, and 6 in the main text
(where the quadratic b(z), given by Eq. (2.24), was used). The quantitative details are different, but
the qualitative results are unaffected by the choice of b(z).
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Figure 12: As Figure 4 in the main text, except showing results with b(z) rectangular (Eq. 2.21).
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Figure 13: As Figure 5 in the main text, except showing results with b(z) rectangular (Eq. 2.21).
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Figure 14: As Figure 6 in the main text, except showing results with b(z) rectangular (Eq. 2.21).
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Figure 15: As Figure 4 in the main text, except showing results with b(z) triangular (Eq. 2.27).
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Figure 16: As Figure 5 in the main text, except showing results with b(z) triangular (Eq. 2.27).
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Figure 17: As Figure 6 in the main text, except showing results with b(z) triangular (Eq. 2.27).
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4.4 Trait convergence in multispecies communities

In Section 3.3, the possibility of the evolutionary convergence of the trait means of two species
was discussed. One important question is whether we observe such convergent evolution in our
multispecies simulated communities. The answer is: yes, but only sporadically. Assuming h2 > 0,
we counted the total number of simulations where the minimum trait difference between two
coexisting species was less than 0.03: it was 60 cases altogether (a little over one percent of all cases
with h2 > 0). We can do the same for simulations where the minimum difference of trait means
is 0.02 (29 cases, or half a percent), and 0.01 (13 cases, or quarter of a percent). Figure 18 shows
examples from our data where pairs of species evolved very similar trait means.

The biological interpretation of the inequalities (3.28) and (3.29) necessary for two-species trait
convergence were that trait variances must be sufficiently different, and the fitness landscape at
the point of convergent evolution should be sufficiently sharply changing. The second of these
conditions is most easily achieved when σ ≈ θ , and indeed, that was when we observed trait
convergence in the two-species scenarios (Section 3.3). However, in our multispecies communities,
the trait variances are always considerably smaller than θ (compare Figure 18 with Figure 10). The
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Figure 18: Simulation results with h2 > 0 where the final community has species with mean trait difference
less than 0.01 units along the trait axis. The dashed lines (not drawn to scale) depict the shape of the intrinsic
growth function.
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only way to achieve the required sharply changing fitness landscape is through frequency-dependent
effects, such as interactions with flanking species from either side. The resulting landscape will
likely not be perfectly symmetric, but the effect of a small asymmetry is simply to shift the trait
means slightly away from strict equality (Section 3.4).

Since to get trait convergence the two trait variances need to be sufficiently different, one would
think that most simulations where convergence was observed had mixed levels of intraspecific
variation (intraspecific standard deviations uniformly sampled from [0.01, 0.3]; this distribution has
the largest variance of the σs). This is indeed the case: out of the 60 cases where the minimum trait
difference was less than 0.03, 41 had mixed levels of variation (68%); out of the 29 with minimum
difference less than 0.02, 24 (83%); and out of the 13 with minimum difference below 0.01, 10
(77%).

Since the conditions for trait convergence are somewhat restrictive, we do not expect it to happen
very often. Our simulation results show that, while convergence is definitely a rare event, it still
happens occasionally. However, measured by its effect on our community metrics (Section 4.3),
trait convergence does not appear to be a very strong force in shaping community structure.

5 Relaxing the extreme quantitative genetic assumption: the Shpak-
Kondrashov model

So far all our results were obtained under the assumption that the ecologically relevant trait z
in question is determined by the sum of a random, normally distributed environmental noise,
and a genetic component with infinitely many loci contributing to the trait, each locus having an
infinitesimal additive effect. Under these assumptions, the intraspecific trait distribution is normal
and selection can only change its mean, not the higher moments (see Section 1). Here we check the
robustness of our results to relaxing the assumption of infinitely many loci.

One way of doing this would be to do a purely individual-based simulation. The disadvantage to
this is that such simulations are very expensive computationally. A convenient middle ground is
provided by the Shpak-Kondrashov hypergeometric model (Shpak and Kondrashov 1999, Yamauchi
and Miki 2009). In this model the trait of interest is coded by n additive loci in a diploid, sexually
reproducing population. The probability Ru

vw that two parents with genotypes v and w give birth to
an offspring with genotype u is modeled via

Ru
vw =

v

∑
s=0

H(v,max(v,s+ v−2n))H(w,max(w,u+w− s−2n)), (5.1)

where

H(u,v) =

(
u
v

)(
u

v−u

)

(
2u
u

) (5.2)

is the hypergeometric distribution. This model is accurate as long as the allelic composition of every
phenotype is in linkage equilibrium. When recombination is free, mating is random, and selection
only depends on phenotype, no within-phenotype linkage disequilibrium will evolve as long as there
was none initially (Shpak and Kondrashov 1999). Since in our Lotka–Volterra ecological models
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selection is a function of phenotype, the hypergeometric model’s assumptions hold as long as there
is no initial linkage disequilibrium within phenotypes.

5.1 Community model with no environmental effect on phenotype

At first let us assume that genotype fully determines phenotype, i.e., there is no environmental
component to the total phenotypic variance, making heritability equal to 1. Let the population
density of species i’s genotype u at time t be Niu(t). Assuming a short time slice ∆t, let the same
densities be N′iu(t) after selection, and then Niu(t +∆t) after reproduction. Selection happens via
Lotka–Volterra dynamics:

N′iu(t) = Niu(t)−∆tNiu(t)∑
v

∑
j

auvN jv(t), (5.3)

where auv is the competitive effect of individuals with genotype v on those with genotype u. Given
the trait values z and z′ associated with these genotypes, the competition coefficients are given by
Eq. (2.18). Since we assume that all species have the same genetic structure, these coefficients are
independent of species identity.

For reproduction, if the density-independent growth rate of species i’s genotype u is biu, and the
offspring genotype frequencies are given by the hypergeometric model, we can write

Niu(t +∆t) = N′iu(t)+∆t biuc−1
i ∑

v
∑
w

Ru
vwN′iv(t)N

′
iw(t) (5.4)

for the densities after the time slice ∆t. Here c−1
i simply ensures proper normalization:

ci = ∑
u

∑
v

∑
w

Ru
vwNiv(t)Niw(t). (5.5)

Putting Eqs. (5.3) and (5.4) together, we get

Niu(t +∆t) =
(

Niu(t)+∆t biuc−1
i ∑

v
∑
w

Ru
vwNiv(t)Niw(t)

)(
1−∆t ∑

v
∑

j
auvN jv(t)

)
. (5.6)

Neglecting higher order terms, subtracting Niu(t) from both sides, dividing by ∆t, and taking the
∆t→ 0 limit, we arrive at

dNiu(t)
dt

= biuc−1
q ∑

v
∑
w

Ru
vwNiv(t)Niw(t)−Niu(t)∑

v
∑

j
auvN jv(t), (5.7)

the differential equation governing genotype u of species i, assuming that genotype perfectly
determines phenotype. Note that the number of equations is the number of species times the number
of possible genotypes; for instance, with S = 51 species and n = 25 loci (leading to 2n+1 = 51
distinct genotypes), the number of differential equations is 51×51 = 2601. This is computationally
much more expensive than simulating the quantitative genetic limit. For this reason, we do not
perform the same extensive simulations as before. Instead, we simulate a few scenarios to see
whether the results are qualitatively the same as in the quantitative genetic limit.

Figure 19 shows a sample run of this model with 51 diploid species, each with n = 25 additive
loci. Note that approximately normal trait distributions are maintained even under strong, constant
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Figure 19: Final state of species’ trait distributions (shaded regions) from simulating Eq. (5.7) with ω = 0.1,
S = 51 diploid species, and random initial conditions. Each species has n = 25 additive loci, each with two
possible alleles (“0” and “+”), for a total of 2n+1 = 51 different genotypic values. We assume a species has
trait −0.6 if all its loci are equal to “0”, and every “+” locus contributes 0.024 units to the trait value; i.e.,
the maximum possible trait value is 50×0.024−0.6 = 0.6. We assume biu depends only on the genotypic
value u: biu = 1 if u is such that the phenotypic value is between ±0.5 and zero otherwise (red dashed line;
not drawn to scale). Species’ trait distributions are approximately normal even close to the edges of the trait
axis, where there is strong, externally imposed selection acting. Since the finite number of loci effectively
discretizes the trait axis into 51 bins, and all species have the exact same genetic structure, once two species
evolve the same phenotypic distribution, they become completely identical with no competitive exclusion
between them. This is exactly what we see on the figure: there are five well-defined regions along the axis
where species can persist, but each region is occupied by several identical, neutrally coexisting “species”.

selection. The qualitative result is the same as in the extreme quantitative genetic limit; the only
difference is that, since genotype is the only determinant of phenotype, and all species share the
same genetic system, species may evolve to have identical phenotypic distributions, thus effectively
morphing into the same species. This convergent evolution is enhanced by the effective discretization
of the trait space, since for n additive loci only 2n+1 different trait values are possible. Once two
species achieve the same genotype (and therefore phenotype) distribution, they are, for all intents
and purposes, the same species, the differences in their phylogenetic histories completely erased.

5.2 Community model with environmental effects on phenotype

To allow for heritabilities different from one, we assume that there is species-specific Gaussian
environmental noise on top of the trait values determined by the genotypes. The distribution piu(z)
of the phenotype values of species i’s genotype u then reads

piu(z) =

√
1

2πσ2
E,i

exp

(
−(µiu− z)2

2σ2
E,i

)
, (5.8)

where µiu is the mean phenotypic trait of species i’s genotype u (i.e., what it would always be
in the absence of environmental noise), which does not depend on time. The variance σ2

E,i is
species-specific. Instead of Niu(t), we now have Niu(z, t), which is the trait distribution of species i’s
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genotype u:

Niu(z, t) = Niu(t)piu(z) = Niu(t)

√
1

2πσ2
E,i

exp

(
−(µiu− z)2

2σ2
E,i

)
. (5.9)

The integral of this distribution along the whole trait axis is
∫

Niu(z, t)dz = Niu(t)
∫

piu(z)dz = Niu(t), (5.10)

as it should be.
The competition term of Eq. (5.7) needs to be modified because individuals compete via their

traits and not their genotypes. Taking this into account, Eq. (5.7) is modified to read

dNiu(z, t)
dt

= b(z)piu(z)c−1
i ∑

v
∑
w

Ru
vwNiv(t)Niw(t)−Niu(z, t)

∫
a(z,z′)∑

v
∑

j
N jv(z′, t)dz′. (5.11)

We integrate both sides across z. The left hand side is simply
∫ dNiu(z, t)

dt
dz =

d
dt

∫
Niu(z, t)dz =

dNiu(t)
dt

, (5.12)

while the right hand side is
∫

b(z)piu(z)dzc−1
i ∑

v
∑
w

Ru
vwNiv(t)Niw(t)−Niu(t)∑

v
∑

j
N jv(t)

∫∫
piu(z)a(z,z′)p jv(z′)dz′dz.

(5.13)
Defining

biu =
∫

b(z)piu(z)dz (5.14)

and
aiu jv =

∫∫
piu(z)a(z,z′)p jv(z′)dz′dz, (5.15)

the final form of the equation reads

dNiu(t)
dt

= biuc−1
i ∑

v
∑
w

Ru
vwNiv(t)Niw(t)−Niu(t)∑

v
∑

j
aiu jvN jv(t). (5.16)

This has the same form as Eq. (5.7), except the two-index auv is replaced with the four-index aiu jv,
which depends not only on the genotypes, but also the environmental variances of species i and j.
These ingredient functions can be integrated just like in Sections 2.3 and 2.3. Assuming a rectangular
b(z) given by Eq. (2.21) and a Gaussian a(z,z′) given by Eq. (2.18), we get

biu =
1
2

[
erf

(
θ −µiu√

2σE,i

)
+ erf

(
θ +µiu√

2σE,i

)]
, (5.17)

aiu jv =
ω√

2σ2
E,i +2σ2

E, j +ω2
exp

(
− (µiu−µ jv)

2

2σ2
E,i +2σ2

E, j +ω2

)
. (5.18)
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Note also that Eq. (5.16) collapses into Eq. (5.7) in the limit of all σ2
E,i going to zero.

Adding an environmental component to species’ phenotypic variances breaks the perfect sym-
metry of the species in that now even if two species evolve the exact same genotype distribution,
their trait distributions will be different (unless their environmental variances are precisely equal).
Because of this, species retain their identity even if they undergo convergent evolution, and cannot
become identical. In this scenario therefore, we end up with communities that look very much like
those obtained under the quantitative genetic limit (Figure 20, left panel). This is despite the fact that,
since the amount of within-species genetic variation changes through time, species’ heritabilities are
also no longer constant, and are no longer equal across species.

The quantitative genetic assumption of infinitely many loci can be violated even more and one
still gets similar results. Reducing the number of loci to n = 10, or even to a mere n = 5 (Figure 20,
center and right panels), the trait distributions are still close to being normal. Since the possible
genotypic trait values still run between ±0.6 but the number of possible genotypes is only 2n+1,
a single allele now contributes 0.06 (n = 10) or 0.12 (n = 5) units to the trait value, instead of the
previous 0.04 with n = 25. This implies that the phenotypic variance will be much larger, even
without the added environmental component. As discussed in Section 4.1, this also means reduced
species richness, which is exactly what we see on Figure 20.

In conclusion, relaxing the assumption of infinitely many loci with infinitesimal additive effects
does not seem to fundamentally alter the results obtained under the quantitative genetic limit, even
when the number of loci is small and their phenotypic effects are large.
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Figure 20: As Figure 19, except all species have an environmental component to their phenotypic variance.
Only the genotypic trait values are plotted. The number of loci is n = 25 on the left, n = 10 in the center, and
n = 5 on the right panel. The species-specific environmental standard deviations σE,i were sampled uniformly
and independently from the interval [0.01, 0.05]. Their values for the six surviving species on the left panel
are: 0.029 (light blue), 0.034 (yellow), 0.017 (red), 0.046 (blue), 0.027 (green), 0.028 (purple). The σE,i in
the center are: 0.010 (yellow), 0.012 (green), and 0.013 (blue). The σE,i on the right: 0.010 (yellow), and
0.014 (blue). Species now cannot evolve the exact same phenotype distribution, because even if their genetic
makeup is identical, environmental noise will affect their traits differently (except in the nongeneric case
of precisely equal environmental variances). Due to this fact, convergent evolution as in Figure 19 is only
possible if there is a generalist-specialist distinction between the species (Section 3.2). Therefore, only a
handful of species survive out of the initial 51, in line with model results in the quantitative genetic limit.
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6 Competition along two independent trait dimensions

Up to this point we have assumed that a single ecologically relevant trait governs the interactions
between individuals of the community. Here we perform a preliminary exploration of the effects of
having multiple independent trait axes.

Let us assume there are two independent quantitative traits z1 and z2. For simplicity, we also
assume that species’ trait distributions have the same variance σ2

i along both directions. The
normalized bivariate trait distribution then reads

pi(~z) =
1

2πσ2
i

exp
(
−‖~z−~µi‖2

2σ2
i

)
=

1
2πσ2

i
exp
(
−(z1−µi1)

2 +(z2−µi2)
2

2σ2
i

)
, (6.1)

where~z = (z1, z2) and ~µi = (µi1, µi2) are vectors in trait space, and ‖ · ‖ is the Euclidean norm.
Competition is assumed to depend only on distance, and so is given by

a(~z,~z ′) = exp
(
−‖~z−~z

′‖2

ω2

)
= exp

(
−(z1− z′1)

2 +(z2− z′2)
2

ω2

)
. (6.2)

We use the rectangular growth function in two dimensions:

b(~z) =

{
1 if max(|z1|, |z2|)≤ θ ,
0 otherwise.

(6.3)

The fitness of an individual with phenotype~z is given by

r(~N,~p,~z) = b(~z)−
S

∑
j=1

N j

∫
a(~z,~z ′)p j(~z ′)d~z ′, (6.4)

the multidimensional generalization of Eq. 2.1 (here and onwards, we suppress the time-dependence
of quantities for notational convenience).

The effective competition coefficients are still given by Eq. (2.4), but integrated over the whole
trait space. Evaluating the integral yields

αi j =
∫∫

pi(~z)a(~z,~z ′)p j(~z ′)d~zd~z ′ =
ω2

ω2 +2σ2
i +2σ2

j
exp

(
−(µi1−µ j1)

2 +(µi2−µ j2)
2

ω2 +2σ2
i +2σ2

j

)
.

(6.5)
The effective growth rates are similarly given by Eq. (2.3) but integrated over~z. With the rectangular
growth function in Eq. (6.3), the integral gives

bi =
∫

b(~z)pi(~z)d~z =
1
4

[
erf
(

θ −µi1√
2σi

)
+ erf

(
θ +µi1√

2σi

)][
erf
(

θ −µi2√
2σi

)
+ erf

(
θ +µi2√

2σi

)]
.

(6.6)
The time evolution of the abundances follows the multidimensional generatization of Eq. (1.18):

dNi

dt
= Ni

∫
ri(~N,~p,~z)pi(~z)d~z = Ni

(
bi−

S

∑
j=1

αi jN j

)
. (6.7)
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We can obtain the multidimensional versions of bi (Eq. 2.7) and βi j (Eq. 2.8) analogously:

~bi =
∫
(~z−~µi)pi(~z)b(~z)d~z

=




σi

2
√

2π
exp

(
−(θ +µi1)

2

2σ2
i

)[
1− exp

(
2θ µi1

σ2
i

)](
erf
(

θ −µi2√
2σi

)
+ erf

(
θ +µi2√

2σi

))

σi

2
√

2π
exp

(
−(θ +µi2)

2

2σ2
i

)[
1− exp

(
2θ µi2

σ2
i

)](
erf
(

θ −µi1√
2σi

)
+ erf

(
θ +µi1√

2σi

))



,

(6.8)

and

~βi j =
∫∫

(~z−~µi)pi(~z)a(~z,~z ′)p j(~z ′)d~zd~z ′

=− 2ω2σ2
i (~µi−~µ j)(

ω2 +2σ2
i +2σ2

j

)2 exp

(
−(µi1−µ j1)

2 +(µi2−µ j2)
2

ω2 +2σ2
i +2σ2

j

)
.

(6.9)

The time evolution of the trait means ~µi is given by the generalization of Eq. (1.23):

d~µi

dt
= G

∫
(~z−~µi)ri(~N,~p,~z)pi(~z)d~z = G

(
~bi−

S

∑
j=1

~βi jN j

)
, (6.10)

where G is the genetic variance-covariance matrix (Lande 1982). Since there are two traits, here G
is a 2×2 matrix.

This two-dimensional model can be simulated just like the original one. We use the simplest
assumption of ecologically and genetically independent traits with equal heritability h2 between
species and along both trait axes. This means that the variance-covariance matrix is simply G = h2I
for all species, where I is the 2×2 identity matrix. The initial number of species is S = 51, their
initial population densities are all equal to one, and both coordinates of the initial trait positions
are uniformly sampled from [−θ , θ ]. We set ω = 0.2, θ = 1/2, and h2 = 0.1 when species can
evolve or h2 = 0 when they cannot. Intraspecific standard deviations are uniformly sampled from
[0.05, 0.2] (in the presence of intraspecific variation), or are all set to σi = 0.005 (much smaller than
θ and the competition width, effectively meaning the lack of any intraspecific variation).

Results of sample simulations are seen on Figures 21 (no intraspecific variation), 22 (nonheritable
variation), and 23 (heritable variation). Results are very much in line with what we have seen for
a single trait dimension. Species richness declines with increasing intraspecific variability, and
further so with nonzero heritability. Mean traits in the zero heritability cases seem to be more evenly
spaced than random, though this needs to be tested rigorously. However, there is a very clear even
pattern when heritability is positive. Importantly, these patterns are only visible when the entire
two-dimensional trait space is considered. Projecting the trait distributions onto just one of the axes,
one sees lots of between-species overlap, and no pattern of even spacing at all. In fact, the opposite
may be argued: species appear to be more clustered than random, which makes sense in light of the
full two-dimensional trait distributions. Whether this signature of extra clustering is detectable in
empirical data, or whether it would still be present if the number of trait axes was much larger than
two, are open questions.
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In summary, our results appear to be fundamentally unchanged by including multiple trait
dimensions. As long as one looks for patterns in the whole trait space and not just a projection
onto a single axis, the same expectations of reduced species richness and even spacing are found as
before.

7 Code

The code we used to generate our results, along with documentation, can be accessed and downloaded
either from the Ecology Letters website, or from https://github.com/dysordys/intravar.
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Figure 21: Final state of community with two trait axes instead of just one. This is the case with no
intraspecific variation; h2 = 0. Out of the initial 51 species, 28 survive. Their traits are more or less evenly
distributed in phenotypic space (top, with the full trait distributions on the left and mean trait positions from a
bird’s eye view, without abundance information, on the right). When this gets projected onto just a single trait
axis at a time (bottom, with projection onto the first axis on the left and onto the second on the right), the
patterns look much more random. Red dashed lines (not to scale) show the growth function b(z).
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Figure 22: As Figure 21, but with species’ intraspecific standard deviations uniformly sampled from
[0.05, 0.2]; h2 = 0. Transparent disks on the top right mark one standard deviation of species’ trait distributions.
Out of the initial 51 species, 18 survive. Again, a pattern that looks more even than random (top) is obscured
by projecting onto a single trait axis (bottom).
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Figure 23: As Figure 22, but with h2 = 0.1. Out of the initial 51 species, 13 survive. This time the regular
pattern is obvious in the whole trait space (top). However, this is still obscured when projected onto any
single axis (bottom), where species appear to have substantial trait overlap.
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