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Abstract

For two competing species, intraspecific competition must exceed interspecific competition for
coexistence. To generalize this well-known criterion to multiple competing species, one must
take into account both the distribution of interaction strengths and community structure. Here
we derive a multispecies generalization of the two-species rule in the context of symmetric
Lotka–Volterra competition, and obtain explicit stability conditions for random competitive
communities. We then explore the influence of community structure on coexistence. Results
show that both the most and least stabilized cases have striking global structures, with a nested
pattern emerging in both cases. The distribution of intraspecific coefficients leading to the
most and least stabilized communities also follows a predictable pattern that can be justified
analytically. In addition, we show that the size of the parameter space allowing for feasible
communities always increases with the strength of intraspecific effects in a characteristic way
that is independent of the interspecific interaction structure. We conclude by discussing possible
extensions of our results to nonsymmetric competition.

Keywords: coexistence, community structure, interspecific competition, intraspecific competi-
tion, Lotka–Volterra model

1 Introduction

The familiar textbook statement, based on the analysis of two-species Lotka–Volterra competition,
is that intraspecific competition must be greater than interspecific competition for two species to
coexist (Case 2000, p. 331, Gotelli 2008, p. 104, Mittelbach 2012, p. 130, Vandermeer and Goldberg
2013, p. 208). This mathematical result formalizes the attractively simple intuition that species must
limit themselves more than their competitors for coexistence (Chesson 2000): if any one of the
species reaches high abundance, it must hinder itself more than its competitor, ensuring that neither
can completely take over.

One important question is how this simple and well-known coexistence rule generalizes to
multispecies communities. When more than two species compete, things quickly get very com-
plicated, even in the context of the classic competitive Lotka–Volterra model (May and Leonard
1975, Case 2000, pp. 333-341). The difficulty is that community structure influences coexistence,
but whereas two-species communities have a very simple structure, the same is not true of mul-
tispecies communities. Importantly, the two-species coexistence rule no longer holds. Indeed, it
is possible to formulate even three-species scenarios where 1) every pair satisfies the rule, yet the
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three species cannot coexist; and 2) the pairs violate the rule, yet the three species do coexist at
a stable equilibrium (Appendix B, Section B2.3). Therefore, in larger systems the two-species
condition is neither necessary nor sufficient: it is, in general, no condition for coexistence at all.
This means that the original, straightforward two-species intuition is not quite so straightforward
in multispecies communities. One cannot simply think of such systems as collections of pairwise
interactions, so that every pair fulfilling the two-species coexistence condition would guarantee the
dynamical stability of feasible equilibria (a “feasible equilibrium” is one where all species have
positive abundances).

Techniques for evaluating the stability of multispecies communities have been available for many
decades, and include invasion analysis, loop analysis, and qualitative modeling. Invasion analysis
(Chesson and Ellner 1989, Chesson 1994, 2009, Adler et al. 2007, Siepielski and McPeek 2010)
attempts to reduce the single, complicated problem of S competing species to S simple problems,
where one species invades, from low abundance, the community formed by the other S−1 species
at the stationary state corresponding to the absence of the invader. The species are considered
coexisting if each has positive growth when invading. This approach has generated great advances,
both on the theoretical (Chesson 1994, 2000, Adler et al. 2007, Siepielski and McPeek 2010) and
empirical (Levine and Rees 2004, Levine and HilleRisLambers 2009, Siepielski et al. 2010, Adler
et al. 2010) side of community ecology. Unfortunately however, like any method, invasion analysis
has its limitations. The outcome of invasion depends on the steady state of the (S− 1)-species
community where the invader is absent—however, obtaining this is often every bit as difficult as
the original S-species problem, so nothing is gained. Also, there is no guarantee that in the absence
of a single invader the rest of the community will not experience further extinctions, resulting in
a state where the originally removed species cannot invade alone, but would be able to invade in
concert with some other species (Case 1990, Law and Morton 1996, Edwards and Schreiber 2010).
Invasibility can therefore be too strict a criterion, which might erroneously classify cases of true
coexistence as mere co-occurrence, in the sense of Leibold and McPeek (2006).

Loop analysis and qualitative modeling (Levins 1968, May 1973, Levins 1974, 1975, Justus
2006) focus on evaluating the local stability of coexistence equilibria. Indeed, the two-species
coexistence rule can be derived using loop analysis. The main limitation of these approaches is that
results can typically be obtained only in cases where either the number of species is low, or the
general structure of interactions especially simple (Justus 2006). The reason is that loop analysis
is a “graphical translation” of the Routh-Hurwitz stability criteria (Edelstein-Keshet 1988): as the
number of species increases, both the number and complexity of these criteria increase, and even if
one were to evaluate them somehow, the results would lack the clear biological interpretation that is
available in e.g. the two-species case in terms of the intra- and interspecific competition coefficients.

Here we ask what can be said about the relationship between intra- and interspecific competition
and coexistence in multispecies competitive communities, and how community structure affects this
relationship in the context of Lotka–Volterra competition. Due to the aforementioned difficulties
with classical methods of analysis, our strategy is instead to decompose the interaction matrix as
the sum of an intra- and an interspecific part, and to study the dynamical stability of coexistence
via the eigenvalues of these parts. We restrict most of our analyses to symmetric competition,
commenting on the more general case in Appendix A (“The case of nonsymmetric interaction
matrices”) and the Discussion. Symmetric interaction matrices naturally arise in many competition
models, e.g., in those based on niche overlap (MacArthur and Levins 1967, Levins 1968, MacArthur



Intra- and interspecific competition The American Naturalist (2016), 188(1):E1-E12 Page 3

1972, Roughgarden 1979, Case 2000, Hernández-García et al. 2009). Also, symmetry allows for
a clear disentangling of the problems of stability and feasibility, makes local stability properties
reflect global stability, and offers a way of relating intra- to interspecific competition not available in
the nonsymmetric case.

This work is structured as follows. After reviewing our methods, we present simple analytical
results extending the two-species coexistence rule to the multispecies case. Next, we relate the
effect of community structure on intra- and interspecific competition and community stability, using
random communities as our baseline (i.e., with competition coefficients randomly and independently
sampled). We find that both the most and least stabilized communities possess simple, characteristic
structures that can be interpreted biologically. Additionally, since an equilibrium needs to be both
stable and feasible to describe coexistence (Meszéna et al. 2006, Barabás et al. 2012, Rohr et al.
2014, Grilli et al. 2015), we explore the influence of community structure on feasibility as well as
stability. We conclude by discussing possible extensions of our results to the case of nonsymmetric
competition.

2 Methods

We start from the generalized Lotka–Volterra equations for S species:

dn
dt

= diag(n)(b+An) (1)

(Appendix B, Section B2.1), where t is time, n is the vector of species densities, diag(n) is the
S×S matrix with the entries of n along its diagonal and zeros elsewhere, b is the vector of intrinsic
growth rates, and A is the interaction matrix; its (i, j)th entry is the amount of change in species i’s
per capita growth rate caused by a unit increase in species j’s density.

We wish to study the stability and feasibility of coexistence generated by Eq. (1) in light of the
distribution of intra- and interspecific interaction strengths. To disentangle the effects of the two, we
write A = B+C, where B only contains interspecific and C only intraspecific effects; therefore B is
equal to A except it has zeros along its diagonal, and C contains only the diagonal entries of A with
all offdiagonal entries being zero. We denote the (i, j)th entries of these matrices by Ai j, Bi j, and
Ci j, respectively; since we are concerned with competition, all coefficients are nonpositive.

For A symmetric, its rightmost eigenvalue being less than zero guarantees the global stability of
coexistence in the Lotka–Volterra model, provided the coexistence equilibrium is feasible (Appendix
B, Section B2.1). This greatly simplifies stability analysis by obviating the need to evaluate the
Jacobian at equilibrium. Also, since A, B, and C are all symmetric, their eigenvalues are real, so
they can be numbered in decreasing order. Let the eigenvalues of A be α1 ≥ α2 ≥ . . .≥ αS, those of
B β1 ≥ β2 ≥ . . .≥ βS, and those of C γ1 ≥ γ2 ≥ . . .≥ γS. Note that, since C is a diagonal matrix, its
eigenvalues are the diagonal entries themselves. Therefore γ1 = maxAii = maxCii is the weakest
and γS = minAii = minCii is the strongest intraspecific competition coefficient.

Moreover, the symmetry of B and C allows one to derive further conditions on A’s stability.
From Weyl’s inequality (Fulton 2000), we have, respectively, the necessary and sufficient conditions

β1 + γS < 0, β1 + γ1 < 0 (2)

for the stability of A (Appendix B, Section B3). In words, the strongest intraspecific interaction
being able to offset the interspecific effects is a necessary condition, while the weakest intraspecific
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interaction being able to offset the interspecific effects is a sufficient condition for the stability of
A. If all intraspecific coefficients are equal, then γ1 = γS and the two conditions are equivalent,
providing a necessary and sufficient condition for stability. In case the intraspecific coefficients
are not equal (the most general situation), fulfilling the sufficient condition β1 + γ1 < 0 guarantees
stability.

Since the rightmost eigenvalue β1 of B appears in both conditions, it is obviously important for
the stability of coexistence. We are therefore interested in how community structure influences β1.
To study this question, we first generate B by sampling its entries randomly—this ensures that any
resulting community structure is coincidental. Then, using a genetic algorithm (Appendix B, Section
B5), we rearrange B’s entries to minimize/maximize β1, and analyze the structure of the resulting
matrices. In other words, we keep the same set of entries but, preserving the symmetry of B, assign
them to different species pairs such that the community composition becomes easier/more difficult
to stabilize than if we were to shuffle the interaction strengths at random. The minimum possible β1
corresponds to the most stabilized, while the maximum β1 to the least stabilized community.

Turning to the matrix C of intraspecific coefficients, we ask the same question: how should they
be distributed across species to minimize/maximize the rightmost eigenvalue of A; i.e., to lead to
the most and least stabilized communities? Since the answer depends on the arrangement of the
coefficients of B, we perform the optimization of C (using the same method as for B) for all three
cases: B arranged to minimize β1, B random, and B arranged to maximize β1.

Finally, we investigate the feasibility of the coexistence, i.e., determine when are all equilibrium
densities strictly positive. The only equilibrium solution of Eq. (1) where all species may coexist
is n = −A−1b, so for a given matrix A we can determine which vectors b make this product
all-positive. Note that if n =−A−1b is feasible for some b, then it is also feasible for ηb with η an
arbitrary positive constant, since this will lead to −A−1(ηb) = ηn as the new equilibrium solution.
Therefore, the magnitude of b is inconsequential for feasibility; only its direction matters. Using
an appropriate integral formula (Appendix B, Section B7), we numerically determine the ratio of
feasible to nonfeasible directions of the vector b.

3 Interspecific competition and community stability

3.1 A simple multispecies generalization of the two-species coexistence rule

For two competing species, stability of the coexistence equilibrium n=−A−1b of Eq. (1) is achieved
if A11A22 > A12A21, meaning that the geometric mean of the intraspecific competition coefficients
has to exceed the geometric mean of the interspecific ones (Appendix B, Section B2.2; note that
this two-species coexistence rule only guarantees stability, but not feasibility). What happens
when the number of species is greater than two? We have seen that Weyl’s inequality provides
necessary and sufficient stability criteria if A is symmetric. In that case however, there also exists
a more direct multispecies generalization. The result, based on a simple corollary of Sylvester’s
criterion (Appendix B, Section B2.5), is that for stability, all species pairs must individually satisfy
the two-species coexistence rule. This condition is necessary but not sufficient, i.e., violating it
guarantees instability, but fulfilling it does not guarantee stability.
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3.2 Random interspecific interaction matrices

To study the effect of community structure on stability, let us start from a randomly assembled
S×S interaction matrix. In particular: the matrix B of interspecific coefficients has zeros along the
diagonal, every entry in the upper triangle is drawn independently from some distribution with mean
µ < 0 and variance V , and the lower triangle is filled out to make B symmetric. A similar approach
has been followed for studying the stability of replicator dynamics; see Diederich and Opper (1989)
in the context of symmetric payoff matrices, and Opper and Diederich (1992) and Galla (2006) in
the context of nonsymmetric ones. Importantly, the precise shape of the distribution from which
the matrix entries are drawn does not matter; the mean and the variance fix all relevant properties
of the matrix (Appendix B, Section B4). The matrix C of intraspecific coefficients has zeros on
the offdiagonal and each diagonal entry is sampled from some distribution with mean µd < 0 and
variance Vd . The full interaction matrix is then given by A = B+C. In constructing the matrices,
we keep all entries of A nonpositive.

For random matrices, one can immediately obtain analytical stability criteria: for S large, the
rightmost eigenvalue β1 of B depends not on any of the fine details of the interactions within the
community, but only on the number of species S, the mean µ , and the variance V via

β1 ≈ 2
√

SV −µ (3)

(Appendix B, Section B4), where the approximation improves with increasing S. Combining with
Weyl’s inequalities (Eq. 2), we obtain γS < µ−2

√
SV and γ1 < µ−2

√
SV as approximations to the

necessary and sufficient conditions for stability, respectively in the case of large S. Of course, for
small communities, the approximation of β1 is less accurate and correspondingly the inequalities
may not hold absolutely.

There are three implications of this result. First, note that a matrix A can always be stabilized
by making its diagonal entries larger in magnitude than the sum of the magnitudes of the other
entries in the same row (“diagonal dominance”; the stability of such a matrix follows directly from
Gershgorin’s circle theorem). If the offdiagonal entries have an average value of µ , then for S large,
one would expect γ1 to have to scale with S to achieve stability. Instead, from Eq. (3) it is clear that
γ1 only needs to scale with

√
S, meaning that much weaker intraspecific coefficients are sufficient to

stabilize coexistence. For instance, in a community of 100 species, γ1 would need to be proportional
to ∼ 10µ instead of ∼ 100µ .

Second, β1 scales with
√

V as well. The variance of the interspecific interaction strengths thus
has a very important effect on stability: all other things being equal, communities with a smaller
variance are easier to stabilize than communities with larger variances.

Third, µ must of course be a negative number in competitive systems, measuring the average
competitive effect of one species on another across the community. It therefore impacts the amount
of intraspecific stabilization required for coexistence via Eq. (3). However, for S large, the effect
of µ in the expression γ1 < µ−2

√
SV is going to be dominated by the square root term. For large

communities, we expect the mean interaction strength µ to be much less important in determining
stability than the variance V .

This means that, for species-rich assemblages, intraspecific competition has to be not just
stronger, but substantially stronger than average interspecific competition. Using the condition
γ1 < µ − 2

√
SV , if the interspecific coefficients are uniformly sampled from [−1, 0] (µ = −1/2,
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V = 1/12), then for S = 12 we get γ1 <−2.5 = 5µ , while S = 300 leads to γ1 <−10.5 = 21µ , with
intraspecific effects having to be at least 21 times stronger than interspecific ones to achieve stability.

3.3 Nonrandom interspecific interaction matrices

What is the effect of a nonrandom community structure on competitive coexistence? We now take the
original, randomly assembled matrix B and rearrange its entries to obtain the minimum/maximum
possible values for β1 (Figure 1; note that, for β1 minimal, species are sorted in increasing order
of the leftmost eigenvector’s entries, while for for β1 random and β1 maximal, they are sorted in
increasing order of the rightmost eigenvector’s entries). Both the minimum and maximum β1 cases
possess a characteristic structure. The minimum β1 case is perfectly hierarchical (Staniczenko et al.
2013): interaction strengths always decrease moving downwards and right when starting from the
top left entry of the matrix. The maximum β1 case is also hierarchical (here competitive effects
always increase going upwards and right—or downwards and left—in the matrix, starting anywhere
along the main diagonal), but in addition, one can also classify the species into two roughly distinct
groups, with competitive interactions significantly weaker within than between those groups.

Both these scenarios have ecological interpretations. For the minimum β1 case, consider a
resource continuum. Now imagine that Species 1 consumes some range of these resources. Species
2 consumes a proper subset of the resources Species 1 consumes, Species 3 a proper subset of
the resources Species 2 consumes, and so on, with the resource spectrum of Species S being the
narrowest and a proper subset of the resource spectra of all the other species. Assume now that the
competition coefficients are proportional to the overlap in resource use, and we end up with the
structure in the top left of Figure 1. Since this arrangement leads to the smallest β1 possible, this
biological scenario is the easiest to stabilize from a dynamical perspective.

For the maximum β1 case, imagine a unidimensional trait axis along which the intensity
of competition is an increasing function of trait difference, instead of the usual assumption of
decreasing competition. For instance, the axis could describe the quality of toxin produced by
species of allelopathic plants, where each plant species is more resistant to toxins that are similar
to its own. If we now assume that the species are sorted into two groups and that between-group
distances along the axis are much larger than within-group distances, we get the structure in the
bottom left of Figure 1. This scenario is also the most difficult to stabilize, since it produces the
largest leading eigenvalue β1 possible with the given set of coefficients.

One can look at the structure of interactions in a different, pairwise way (Figure 2). We line up
all 50 species of the community horizontally, and connect two species by a blue arc if they would
coexist in isolation (intraspecific competition greater than interspecific competition between them),
and with a red arc if they would not. In the minimum β1 case, red arcs disappear in a pattern from
right to left as intraspecific competition is increased, reflecting species’ positions in the hierarchy.
In the maximum β1 case, two clear groups emerge as intraspecific competition is increased: those
within the groups can coexist pairwise, but those across the groups cannot, in line with the biological
interpretation given above. The size of the groups is dictated by the relative strength of intra- to
interspecific competition. In all cases, there can be no coexistence in the limit of no intraspecific
competition, while in the case of strong intraspecific competition all species pairs would coexist in
isolation—though, as discussed before, this does not guarantee community-wide coexistence.
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Figure 2: Pairwise interactions in a 50-species competitive community. Columns correspond to different
arrangements of the interspecific interaction matrix B: minimizing its rightmost eigenvalue β1 (left), random
(middle), and maximizing β1 (right). Rows correspond to different values of the intraspecific competition
coefficient, here assumed to be the same for all species. In each panel, a blue/red connection between two
species means that those two species could/could not coexist in a pairwise manner. Highlighted arcs are
interactions of a particular species (arbitrarily chosen to be the 15th species from the left in each ordering).
Note the regular patterns of blue and red arcs emerging in the minimum and maximum β1 columns, reflecting
the community structures seen on Figure 1.
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4 Intraspecific competition and community stability

Once we arrange the matrix B of interspecific coefficients to minimize/maximize β1, we can ask
how one should distribute a given set of intraspecific coefficients C across species to obtain the
smallest/largest value of α1, the rightmost eigenvalue of the full interaction matrix A determining
overall community stability.

Figure 1 shows how the eigenvalue distribution changes according to the arrangement of intra-
and interspecific coefficients. For each arrangement of interspecific competition coefficients, we
found the arrangement of intraspecific ones minimizing and maximizing the rightmost eigenvalue α1
of A. While each of the six cases exhibits a different pattern, they are all consistent with a simple rule
of thumb: to maximize α1, stronger intraspecific entries should be associated with species whose
interspecific interaction strengths have smaller variance, and vice versa. Conversely, to minimize α1,
stronger intraspecific coefficients should be paired with larger variance in interspecific interaction
strengths. For example, to maximize α1 in the minimum β1 case in Figure 1, the first species should
be assigned the weakest intraspecific interaction, the second species the second weakest, and so on,
with the Sth species (smallest variance in interspecific interaction strengths) having the strongest
one.

These patterns are only approximate, and are noticeably fuzzy in the case where both β1 and
α1 are minimized, and in both of the random cases1. We do not know whether our rule of thumb
is indeed a general rule. However, It can be shown that the observed patterns are always the
theoretically expected ones in our particular scenarios (Appendix B, Section B6). A more intuitive
explanation can also be given. In general, a higher variance in the interspecific effects also implies a
larger absolute magnitude of the strongest intraspecific effect experienced by a species (Figure 1).
Assigning the weakest interspecific coefficients to species with the highest variance is therefore
the most likely way of violating Sylvester’s necessary criterion that all species pairs follow the
two-species rule for coexistence, destabilizing the system.

5 Feasibility

Dynamical instability precludes, but dynamical stability does not guarantee coexistence: the equi-
librium solution also needs to be feasible, i.e., n = −A−1b needs to be strictly positive. For two
species, writing b = (cosθ , sinθ) where θ defines the direction of b, this translates into the the
feasibility condition

arctan
(

A21

A11

)
< θ < arctan

(
A22

A12

)
(4)

(Appendix B, Section B2.2). That is, for any given interaction matrix A, one can determine all
directions of b leading to a feasible equilibrium. This is best expressed via the concept of the
feasibility domain Ξ, the proportion of feasible directions to all possible directions (Svirezhev and

1One might wonder why there is a pattern to the random cases at all. The answer is that species are ordered by the
leading eigenvector, which is nonrandom with respect to the (otherwise randomly determined) variance of the rows’
entries. See the random case in Figure 1: there is a visible trend for stronger coefficients towards the upper right and
lower left corners of the matrix.
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Logofet 1983, Rohr et al. 2014, Grilli et al. 2015). In the two-species case,

Ξ =
2
π

max
{

arctan
(

A22

A12

)
− arctan

(
A21

A11

)
,0
}
. (5)

Below, instead of Ξ, we use the (geometric) average feasible domain per dimension S
√

Ξ, a more
meaningful metric which makes feasilibity comparable across systems with different numbers of
species (Appendix B, Section B7).

To explore the effect of intra- and interspecific interaction strengths on the feasibility of compet-
itive communities, we obtained S

√
Ξ via numerical integration (Appendix B, Section B7) for all three

cases of distributing the interspecific interaction strengths: minimum β1, random, and maximum
β1. For each of the three cases we gradually increased the strength of overall intraspecific competi-
tion, assumed to be the same for all species. We only calculated the feasibility domain for stable
matrices, since a feasible unstable equilibrium does not describe coexistence. We know a priori
that S
√

Ξ must be zero at the boundary of stability and instability where the rightmost eigenvalue
crosses the origin of the complex plane, because at this point the model is structurally unstable.
As intraspecific competition is increased from this point on, the matrices invariably obtain larger
domains of feasibility S

√
Ξ (Figure 3). Surprisingly, after an initial, very steep increase of feasibility

from zero up, S
√

Ξ settles down to the same characteristic curve independent of the structure of
interspecific interactions. In the big picture, intraspecific competition has the most influence on
feasibility, whereas interspecific competition has the role of determining the point at which the
community becomes stable in the first place.

6 Discussion

In this work we explored the relationship between intra- and interspecific competition and its
effect on coexistence in multispecies competitive communities. Our strategy was to decompose
the interaction matrix into intra- and interspecific parts, allowing us to bound the stability of the
community in terms of their eigenvalues via Weyl’s inequality. We could then obtain simple stability
criteria for random competitive communities. Using the random case as a springboard, we searched
for the community structures that minimize/maximize the rightmost eigenvalue of the interaction
matrix, both in terms of intra- and interspecific effects. Both the most and the least stabilized case
exhibited a characteristic interspecific structure, with a hierarchical arrangement of coefficients,
and a quasi-bipartite structure in the least stabilized configuration. Intraspecific effects were most
stabilizing when species with the largest variance in interspecific interactions were assigned strong
intraspecific coefficients, and most destabilizing when they were assigned weak ones. The feasible
fraction of parameter space invariably increased with a decreasing rightmost eigenvalue, showing
that systems that are more likely to be stable are also more robust against environmental perturbations
of the intrinsic growth rates.

Conclusions about the relationship between intra- and interspecific competition have largely
stemmed from experiments and analyses which considered very few (usually two) species (e.g.,
Chase et al. 2002, Bolker et al. 2003, Abrams and Wilson 2004, Forrester et al. 2006, Adler et al.
2007, Murrell 2010, Hasegawa et al. 2014). In this case, the conditions for the stability of the
interaction matrix translate into simple inequalities containing the competition coefficients, with the
direct biological interpretation that species must limit themselves more than their competitors for
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Figure 3: The feasibility domain S
√

Ξ as a function of intraspecific interaction strength, assumed here to be
constant across S = 50 species. The curves correspond to β1 maximized (orange), β1 corresponding to a
random competition matrix (purple), and β1 minimized (green), where β1 is the rightmost eigenvalue of the
matrix B of interspecific competition coefficients. Note that the abscissa is reversed in order to better indicate
increasing strength of intraspecific competition. In each case, S

√
Ξ is plotted only for stable matrices. Except

for the discrepancy near the boundary between stability and instability, all three cases eventually converge on
the same characteristic feasibility curve for any strength of intraspecific competition.

coexistence. As the number of species increases, the Routh-Hurwitz stability criteria (Edelstein-
Keshet 1988) grow in number and complexity; each must be satisfied for stability, yet their biological
implications are no longer easily derived. Therefore, in general, there is no simpler way to answer
the question of stability than to state that “the rightmost eigenvalue has to be in the left half plane”.
The necessary condition for symmetric matrices that all species pairs must individually satisfy the
familiar two-species coexistence condition is a convenient exception to this rule.

Two-species competitive communities have a simple and transparent structure. For multiple
species, many different structures are possible, with large effects on community stability. We have
shown that the same set of coefficients can lead to vastly different stability properties: communities
that were most stabilized (hierarchical arrangement) or least stabilized (hierarcy, but with two
groups and weak interactions within, strong interaction between group members) both exhibited
a characteristic structure. The wide range of possible rightmost eigenvalues for the exact same
set of coefficients, with only the community structure varying, is one of the main reasons why
there is no trivial generalization of the two-species coexistence rule to multispecies communities.
Nevertheless, it is often implied, without being explicitly stated, that the two-species criterion holds
for an arbitrary number of species (Barot 2004, Amarasekare et al. 2004, Chesson et al. 2004, Adler
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et al. 2007, Chesson 2011, Houseman 2014). It does not—except as a necessary but insufficient
stability condition for symmetric interaction matrices only.

Of course, it must be true in a broader sense that, in order to coexist, species must limit
themselves more strongly than they limit their competitors: if we add individuals to a species at a
stable attractor, that same number of individuals will eventually die and the community will return to
its state prior to the perturbation. Attributing this return exclusively to the relative strength of intra-
and interspecific competition between pairs of species, however, potentially ignores the myriad
indirect higher-order feedbacks influencing species trajectories, which can override the simple
two-species coexistence rule. For instance, in reactive systems a perturbation to species abundances
may initially be amplified before returning to equilibrium (Neubert and Caswell 1997, Tang and
Allesina 2014). In such cases, the overall requirement for stability does not translate directly into a
straightforward rule for the competition coefficients themselves. Interestingly, symmetric matrices
cannot be reactive—the same situation for which there is a reasonably straightforward generalization
of the two-species rule of coexistence.

What can be said about nonsymmetric interaction matrices? Even in cases where symmetric
competition is a consequence rather than an assumption of the model in question (MacArthur
1972, Roughgarden 1979, Case 2000, Hernández-García et al. 2009), other confounding factors not
included in the model will likely distort perfect symmetry. In other cases, such as size-structured
competition for light in forest trees (Kohyama 1993, 2006, Adams et al. 2007), asymmetry is an
essential part of the system’s ecology.

We do not expect our results to change substantially for mild degrees of asymmetry, since that can
be accounted for as a small perturbation to the symmetric model. For substantial asymmetry however,
several difficulties emerge, rendering most of the techniques applied in this work inapplicable (see
Appendix A). Some conclusion can still be made though for random competitive communities, as
long as the variance of the intraspecific effects around a mean γ is not very large. Then one can
derive the stability condition γ > (1+ρ)

√
SV −µ , with ρ being the average correlation between

the effect of species i on j and the effect of j on i. For strongly negative values of ρ , this implies
that interspecific effects can be much larger than intraspecific ones and coexistence can still be
stable, at least locally. In fact, the aforementioned case of size-structured competition for light in
forests, where taller trees have a much larger effect on shorter ones than vice versa, presents an
example where negative values of ρ are expected. Such systems could then be stabilized by much
weaker intraspecific effects than corresponding symmetric cases. It is interesting to wonder whether
and how much this structural property is responsible for explaining the general prevalence of such
hierarchical competitive systems. Whether their stability is in fact explained in this way awaits
further investigations.
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Appendix A: The case of nonsymmetric interaction matrices

When the interaction matrix A is nonsymmetric, substantial complications emerge which make
it difficult to say much about the relationship between intra- and interspecific competition and
coexistence. First, Sylvester’s criterion no longer applies, therefore there is no guarantee that a
species pair violating the two-species coexistence rule will lead to the loss of coexistence (see
Appendix B, Section B2.3 for a three-species, and Figure A1 for a 50-species example). Second,
local stability no longer guarantees global stability of coexistence, and local instability does not
mean the lack of coexistence, e.g., along some periodic or chaotic orbit (Appendix B, Section B2.3
and Section B2.4). Third, A no longer determines stability; instead, the Jacobian evaluated at the
equilibrium n =−A−1b does. This reads J = diag(n)A =−diag(A−1b)A (Appendix B, Section
B2.1). Since J now depends on the intrinsic rates, it is impossible to give a formal coexistence
criterion independent of b. Fourth, Weyl’s inequality no longer holds, making the decomposition of
J into intra- and interspecific parts ineffective.

Despite these difficulties, some conclusions can still be made for random asymmetric competitive
communities. As long as the variance of the equilibrium densities is small, we have diag(n)≈ n̄I,
where n̄ is the average abundance and I is the identity matrix. Then, J = diag(n)A≈ n̄A, therefore
A still determines stability, albeit only locally. If we now perform the A = B+C decomposition
where B contains the interspecific and C the intraspecific coefficients, one can apply the elliptic law
of random matrix theory (Sommers et al. 1998, O’Rourke and Renfrew 2014; Appendix B, Section
B4.2) to find the leading eigenvalue β1 of B:

β1 ≈ (1+ρ)
√

SV −µ, (A1)

where ρ is the average correlation between Bi j and B ji. Then, as long as the variance of the
intraspecific effects around a mean γ is not too large (i.e., C≈ γ I), we have the stability condition

γ > (1+ρ)
√

SV −µ (A2)

(Appendix B, Section B4).
Due to the similarity of Eqs. (3) and (A1), much same conclusions apply as in the symmetric

case—but only as long as ρ is positive or not too strongly negative. Strong negative correlations
on the other hand can substantially reduce the amount of intraspecific competition required for
stability. As an extreme example, if ρ =−1, then β1 =−µ , and therefore γ < µ will lead to stability
regardless of the number of species S or the variance V in interspecific effects. Even if the variance
is much larger than the mean, stability is ensured. In other words, for strongly negative values of ρ ,
interspecific competitive effects may dominate over intraspecific ones, and the system can still be
stable. See Figure A1 for an example with γ =−2.2, µ =−2, V = 0.3, and ρ =−0.95.

The most important restrictive assumption above is that the variance of the species abundances
around n̄ is small. Real communities, on the other hand, possess a characteristic species abundance
distribution close to lognormal, with a large variance (McGill et al. 2007). Moreover, theoretical
investigations of the species abundance distribution under the replicator dynamics with both sym-
metric (Tokita 2004) and nonsymmetric (Yoshino et al. 2008) payoff matrices have arrived at the
exact same conclusion. The species abundance distributions produced by the model are therefore
consistent with empirically observed ones, rendering the assumption of nearly equal equilibrium
abundances implausible.
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However, preliminary explorations (Allesina and Tang 2015) show that when the equilibrium
abundances n follow realistic species abundance distributions, the elliptic law consistently overesti-
mates the leading eigenvalue. That is, n̄A always has a larger leading eigenvalue than diag(n)A, and
sometimes substantially so. Eq. (A1) can therefore be seen as a conservative estimate of stability.
We therefore expect this criterion, based on the elliptic law, to provide a sufficient stability condition
for realistic communities.
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Figure A1: A highly asymmetric, stable competitive community of 50 species. Interspecific coefficient
pairs (Bi j,B ji) were randomly drawn from a bivariate normal distribution with marginal means µ = −2,
marginal variances V = 0.3, and correlation ρ =−0.95. Intraspecific coefficients Cii were uniformly sampled
from [−2.4,−2]. Top left: the matrix B of interspecific coefficients. Top right: eigenvalue distribution of
A = B+C in the complex plane. Since all eigenvalues have negative real parts, the system is locally stable.
Bottom left: distribution of intra- and interspecific interaction strengths; note the substantially larger variance
of the interspecific coefficients. Bottom right: species (nodes) connected by blue/red arcs if they can/cannot
coexist as pairs. Highlighted arcs are connections of species no. 15. Note that several species pairs violate the
pariwise coexistence rule, yet the community as a whole is locally stable.
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Appendix B: Supporting Information

B1 Dynamical stability, structural stability, and feasibility

Consider an autonomous dynamical system with S variables n1, . . . ,nS (representing species abun-
dances or biomasses) and parameters µ1, . . . ,µk:

dni

dt
= fi(n1, . . . ,nS,µ1, . . . ,µk), (B1)

where t is time, and the fi are functions of the ni and the model parameters (the time-dependence
of the ni is suppressed for notational convenience). An equilibrium of the system is a set of values
n̂1, . . . , n̂S such that all rates of change are simultaneously zero:

fi(n̂1, . . . , n̂S,µ1, . . . ,µk) = 0 (B2)

for all i = 1, . . . ,S. The local dynamical stability of an equilibrium can be determined by inspecting
the eigenvalues of the Jacobian matrix Ji j = ∂ fi/∂n j evaluated at the equilibrium: stability requires
that all eigenvalues have negative real parts. An equilibrium that is not locally dynamically stable
is called (locally, dynamically) unstable. A “stable matrix” is one with all its eigenvalues having
negative real parts.

The dynamics is said to be structurally stable if sufficiently small perturbations of the parameters
µ1, . . . ,µk cannot qualitatively alter the behavior of the system’s trajectories. Equilibria with
eigenvalues sitting exactly on the imaginary axis present an example of structural instability, as
an arbitrarily small perturbation could in principle tip those eigenvalues either in the stable or the
unstable direction in the complex plane, qualitatively changing system behavior.

The values of the abundances ni at an equilibrium point are in principle arbitrary. However, in
ecological systems we are usually interested in equilibria that are strictly positive, i.e., ni > 0 for all
i. These are called feasible equilibrium points.

B2 The Lotka–Volterra model

B2.1 General properties

The generalized Lotka–Volterra model for S species with abundances n1, . . . ,nS can be written

dni

dt
= ni

(
bi +

S

∑
j=1

Ai jn j

)
, (B3)

where bi is the intrinsic growth rate of species i, and the Ai j are interaction coefficients: Ai j measures
the amount of change in species i’s per capita growth rate caused by a unit change in species j’s
density.

The equation can be written in vector form. Collecting the coefficients bi into the vector b, the
abundances ni into the vector n, the interaction coefficients Ai j into the matrix A, and letting diag(n)
be the diagonal matrix with the entries of the vector n along its diagonal and zeros elsewhere,
Eq. (B3) reads

dn
dt

= diag(n)(b+An). (B4)
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The Lotka–Volterra model with S species may have up to 2S equilibria, out of which at most one is
feasible. We call this the coexistence equilibrium (even when it does not describe actual coexistence).
From Eq. (B4), this equilibrium is given when all the n are assumed nonzero:

b+An̂ = 0, (B5)

where the hat denotes equilibrium values. Therefore,

n̂ =−A−1b, (B6)

with A−1 being the inverse of A. This equilibrium is feasible if n̂ is strictly positive. Note that if
a vector b leads to a feasible solution, so does the vector ηb for an arbitrary positive constant η .
Indeed, for b∗ = ηb we get the solution n̂∗ =−A−1b∗ =−A−1ηb = η n̂, which is still feasible if
η > 0. For a given matrix A therefore, only the direction of b matters for feasibility, not its absolute
magnitude. This opens the way for describing feasibility via the fraction of directions in which b is
feasible, out of all possible directions.

To determine the stability of the equilibrium given by Eq. (B6), we calculate the Jacobian J with
entries Ji j = ∂ (dni/dt)/∂n j, using Eq. (B4). The result is J = diag(b+An)+diag(n)A. Evaluating
J at equilibrium, the first term cancels because n̂ = −A−1b, therefore we get J|n̂ = diag(n̂)A =
−diag(A−1b)A. Stability of this matrix guarantees the local stability of the coexistence fixed point,
though not its feasibility.

Important results follow if A is a symmetric matrix with all negative entries; i.e., when interac-
tions are purely competitive. We then have the following (MacArthur 1970, Hofbauer and Sigmund
1988, Hernández-García et al. 2009). First, the system cannot exhibit cycles, chaos, or any other
behavior than simple convergence to a fixed point. Second, if n̂ is feasible and locally stable, it is
globally stable as well. Third, stability of the coexistence equilibrium depends only on the stability
of A instead of the full Jacobian evaluated at equilibrium, J|n̂ = diag(n̂)A. Since A is symmetric, all
its eigenvalues are real; as long as all of them are negative, the coexistence equilibrium is (globally)
stable.

B2.2 Two species

In the well-known textbook example of the competitive two-species Lotka–Volterra equations, one
has the great simplification that the coexistence equilibrium is globally stable or unstable even if A
is not symmetric (the easiest way to prove this is by constructing appropriate Lyapunov functions;
see, e.g., Zeeman 1993). Therefore, if coexistence is locally stable, it is also globally stable. Based
on this, four outcomes are possible:

1. No feasible equilibrium point exists; species 1 wins from any positive initial condition.

2. No feasible equilibrium point exists; species 2 wins from any positive initial condition.

3. There is a feasible equilibrium point but it is unstable; species 1 or 2 wins depending on initial
conditions.

4. There is a feasible equilibrium point and it is stable; the two species coexist from any positive
initial condition.
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It should be mentioned that there are other, degenerate outcomes as well (for instance, the two
species could be exactly identical in all their parameters, leading to a one-dimensional, neutrally
stable manifold), but these examples are structurally unstable.

The coexistence equilibrium will be feasible if it is strictly positive: n̂ > 0. Using Eq. (B6),
this requirement can be written as −A−1b > 0. Writing this inequality out in components for two
species and simplifying, one arrives at

A12

A22
<

b1

b2
<

A11

A21
(B7)

(e.g., Vandermeer 1975, Mallet 2012). This same set of conditions may be written in a slightly
different form. As discussed before, only the direction of b matters for feasibility, not its magnitude.
We therefore parameterize the intrinsic growth rates as b = (cosθ , sinθ), i.e., b has length 1, and
0 < θ < π/2 is the angle measured counterclockwise from the abscissa of the two-dimensional
plane of possible b vectors. Substituting this into Eq. (B7) and simplifying, we get

arctan
(

A21

A11

)
< θ < arctan

(
A22

A12

)
. (B8)

Expressing this as the proportion of feasible θ values out of all possible values 0 < θ < π/2, and
calling this fraction Ξ, we get

Ξ =
2
π

max
{

arctan
(

A22

A12

)
− arctan

(
A21

A11

)
, 0
}
, (B9)

where max(·, ·) picks the larger of the two arguments.
For dynamical stability, all eigenvalues of J|n̂ = diag(n̂)A (the Jacobian evaluated at the equi-

librium point) must have negative real parts. For two species, and two species only, there is a
shortcut: the coexistence equilibrium for competitive dynamics is stable if and only if A has a
positive determinant (Zeeman 1993). Writing this condition out, we get

det(A) = A11A22−A12A21 > 0, (B10)

or, equivalently, √
A11A22 >

√
A12A21 . (B11)

The left hand side is the geometric mean of the two intraspecific competition coefficients, while the
right hand side is the geometric mean of the interspecific coefficients.

This condition is often interpreted as intraspecific competition having to be stronger than
interspecific competition for coexistence. Note that this is a necessary but not a sufficient coexistence
condition, as Eq. (B7) also needs to be satisfied. While true in the form just presented, one should be
careful not to overinterpret this simple result. For instance, consider the following parameterization
of the two-species Lotka–Volterra model:

b =

(
6

10

)
, A =−

(
9 1
13 2

)
. (B12)

This parameterization satisfies Eqs. (B7) and (B11), therefore this system has a globally stable,
feasible coexistence equilibrium. Yet the interspecific coefficient A21 is larger in magnitude than
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the sum of all the other coefficients taken together. The intra- versus interspecific competition
argument is valid only for the geometric averages as in Eq. (B11), not for the individual coefficients
themselves.

Finally, note that an alternative form of the Lotka–Volterra equations, preferred by Chesson
(2000), reads

dni

dt
= nibi

(
1+

S

∑
j=1

αi jn j

)
, (B13)

where αi j measures the effect of species j on species i’s intrinsic growth rate bi. Eqs. (B3) and
(B13) are both perfectly legitimate parameterizations, and can be transformed into one another
by Ai j = biαi j. For S = 2, the feasibility condition Eq. (B7) reduces to α12/α22 < 1 < α11/α21,
implying α12 < α22 and α21 < α11. This yields a much more direct version of the principle that
two species can only coexist if intraspecific effects exceed interspecific ones (Chesson 2000).
Unfortunately, this more direct interpretation of the two-species coexistence rule via Eq. (B13) is
only available in the two-species case. For S > 3, violating the condition does not preclude, and
vice versa: fulfilling it does not ensure coexistence. Below we construct examples to show this. To
make sure that our conclusions will hold in both the parameterizations of Eq. (B3) and Eq. (B13),
we will deliberately set bi = 1 for all i, making the two parameterizations equivalent.

B2.3 Three species

The only possible structurally stable dynamical behavior of the two-species competitive Lotka–
Volterra model is the convergence to a stable fixed point. With three species, and still assuming
purely competitive dynamics, limit cycles are also possible (May and Leonard 1975), but not chaos.
Importantly, Eq. (B11), the familiar two-species condition between intra- and interspecific compe-
tition, no longer holds. In fact, one can construct counterexamples going both ways: competitive
matrices where every pair of species satisfies the criterion and yet the system as a whole is unstable,
and matrices where the criterion is violated yet coexistence is stable.

An example of the former is

b =

1
1
1

, A =−

10 9 5
9 10 9
5 9 10

. (B14)

Since A is symmetric, its eigenvalues determine the global stability of coexistence (MacArthur
1970), as discussed before. The eigenvalues are −5 and (−25±

√
673)/2, the largest of which is

positive. Coexistence is therefore globally unstable: regardless of feasibility, the inevitable outcome
is the extinction of at least one species (Figure B1, left panel). This is despite the fact that all species
pairs individually satisfy the coexistence criteria, both in terms of Eq. (B3) and Eq. (B13), and so
would stably coexist in the absence of the third species.

Similarly, let us consider the following parameterization:

b =

1
1
1

, A =−

10 7 12
15 10 8
7 11 10

. (B15)
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Figure B1: Dynamics of three-species competitive Lotka–Volterra equations. Left: intraspecific competition
exceeds interspecific competition for all species pairs, yet there is no coexistence. Center: intraspecific
competition does not exceed interspecific competition for all species pairs, yet coexistence is possible. Right:
the coexistence equilibrium is unstable, but the species still coexist on a stable limit cycle.

Taking just species 1 and 2, the geometric mean of their interspecific competition coefficients
exceeds that of the intraspecific ones. Also, (b2A21)/(b1A11) = α21/α11 > 1, violating two-
species coexistence in the parameterization of Eq. (B13) as well. Yet the equilibrium densities
are feasible: n̂ =−A−1b = (10, 22, 29)/602, and the eigenvalues of J|n̂ = diag(n̂)A are −1 and
(−2±

√
−1
√

1591)/301, all of which have negative real parts. The coexistence equilibrium is
therefore feasible and at least locally stable (Figure B1, center panel).

Finally, an example of a stable limit cycle solution is given by

b =

1
1
1

, A =−

10 6 12
14 10 2
8 18 10

 (B16)

(Figure B1, right panel).

B2.4 Four or more species

For four species, even purely competitive Lotka–Volterra dynamics may produce chaotic solutions.
One example is given by

b =


1.00
0.72
1.53
1.27

, A =−


1.0000 1.0900 1.5200 0.0000
0.0000 0.7200 0.3168 0.9792
3.5649 0.0000 1.5300 0.7191
1.5367 0.6477 0.4445 1.2700

 (B17)

(after Vano et al. 2006); the dynamics is shown on Figure B2. For five or more species, a classic
theorem by Smale (1976) establishes that one can construct the parameters of the competitive
Lotka–Volterra equations to be compatible with any asymptotic dynamical behavior, i.e., the range
of dynamics exhibited by these models is unrestricted.
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Figure B2: Chaos in a four-species competitive Lotka–Volterra system. The coexistence equilibrium is
unstable, but the species still coexist on the stable chaotic attractor.

B2.5 Multispecies generalization of the two-species coexistence rule

Although the two-species coexistence rule does not apply in communities of more than two species,
a generalization can be given for competitive matrices A that are symmetric. This generalization is
based on a simple corollary of Sylvester’s criterion.

Sylvester’s criterion for positive definite matrices (Horn and Johnson 2012) states that a real
symmetric matrix A has positive eigenvalues if and only if all its principal minors are positive (a
“principal minor” of a square matrix A is the determinant of a matrix obtained by deleting rows and
columns of the same index from A). Since A has positive eigenvalues if and only if −A has negative
ones, an immediate consequence of the above is Sylvester’s criterion for negative definite matrices:
a real symmetric matrix has negative eigenvalues if and only if all its odd-sized principal minors are
negative and all its even-sized principal minors are positive.

The set of all principal minors includes every 2×2 principal minor. Therefore a weaker but
simpler version of Sylvester’s criterion for negative definite matrices states that all 2×2 principal
minors must be positive for A to have negative eigenvalues; i.e., failing to fulfill this criterion
guarantees some nonnegative eigenvalues, but fulfilling it does not guarantee all negative ones.

In ecological terms, a 2×2 principal minor is simply the determinant of the interaction matrix
of a two-species subsystem, with all other species absent. Requiring all 2×2 principal minors to be
positive is therefore equivalent to requiring that all species pairs independently satisfy Eq. (B11). In
this way, Sylvester’s criterion generalizes the two-species rule to multiple species: a community of
S symmetrically competing species cannot be stable if there is even a single species pair violating
the two-species coexistence rule.
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B3 Decomposition of the interaction matrix

We decompose the interaction matrix A, with coefficients Ai j ≤ 0, as the sum of two matrices B and
C, defined as

Bi j =

{
Ai j if i 6= j,
0 if i = j,

(B18)

Ci j =

{
0 if i 6= j,
Ai j if i = j.

(B19)

Thus, B contains the interspecific effects, C the intraspecific effects, and A = B+C.
When A is symmetric (and therefore both B and C are symmetric), it is simple to write bounds

for the eigenvalues of A in terms of the eigenvalues of B and C, and thus illustrate the effects on the
stability of the system using the familiar language of intra- and interspecific competition.

The mathematical setting is as follows: take B and C symmetric, S× S matrices, and define
A = B+C. Because the matrices are symmetric, all eigenvalues are real. We number the eigenvalues
in order: the eigenvalues of A are α1 ≥ α2 ≥ . . .αS, those of B are β1 ≥ β2 ≥ . . .βS, and those of C
are γ1 ≥ γ2 ≥ . . .γS. Since every coefficient Ai j is negative or zero, it follows that all γi ≤ 0, because
the eigenvalues of C are simply the coefficients on the diagonal of A sorted in decreasing order.
Also, since B has all zeros along its diagonal, β1 ≥ 0 and βS ≤ 0. This is because the sum of the
diagonal entries (zero in our case) is also the sum of all eigenvalues, so either every eigenvalue is
zero, or some are positive and some are negative. For stability, we need α1 < 0.

When the matrices are symmetric, we can write the following inequalities (Horn and Johnson
2012):

max
i+ j=S+k

βi + γ j ≤ αk ≤ min
i+ j=k+1

βi + γ j, (B20)

where k = 1, . . . ,S. Setting k = 1 (i.e., bounding α1, the rightmost eigenvalue of A, determining
stability), we can simplify the inequalities:

max
j

β j + γS− j+1 ≤ α1 ≤ β1 + γ1, (B21)

which implies
β1 + γS ≤ α1 ≤ β1 + γ1. (B22)

These relationships allow us to write a necessary condition for stability:

β1 + γS < 0, (B23)

meaning that the strongest self-regulation γS = minAii needs to be strong enough to offset the
rightmost eigenvalue β1 stemming from interspecific interactions. Similarly, we can write a sufficient
condition for stability:

β1 + γ1 < 0, (B24)

meaning that the weakest self-regulation γ1 = maxAii needs to be strong enough to offset the
rightmost eigenvalue β1 stemming from interspecific interactions. For instance, in the two-species
case, β1 is simply equal to−A12 =−A21. Assuming A11 < A22 without loss of generality, A11 < A12
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is a necessary, while A22 < A12 is a sufficient condition for two-species coexistence—consistently
with the precise condition A11A22 > A2

12 coming from Eq. (B11).
Clearly, when the diagonal entries of A are all equal, the two conditions are the same, providing

a necessary and sufficient condition for stability.
How sharp are these bounds? Because we are foregoing the exact matrices B and C and only

consider their eigenvalues, the bounds cannot be sharp in all cases. In fact, there are very many
possible matrices having exactly the same eigenvalues (isospectral matrices). In particular, when
we consider only the eigenvalues of C, we forego the precise identity of the species, so that the
S! different ways of arranging the coefficients Cii on the diagonal would yield exactly the same
eigenvalues γi, but would alter the eigenvalues of A. This subtle point is better understood through a
simple example.

Take a given matrix B, and suppose that the diagonal matrix C has eigenvalues γ1 =−2, γ2 =−9,
and γ3 =−10. There are 3! = 6 matrices C with the same exact eigenvalues. However, each possible
C will yield a different A = B+C matrix, and thus different eigenvalues αi. Table B1 shows that

C, B, and A Eigenvalues α1 < 0

 −2 0 0
0 −9 0
0 0 −10

  0 −3 −1
−3 0 −5
−1 −5 0

  −2 −3 −1
−3 −9 −5
−1 −5 −10

 γ1 =−2,γ2 =−9,γ3 =−10
β1 = 5.429,β2 = 0.876,β3 =−6.305

α1 =−0.792,α2 =−5.094,α3 =−15.114
Yes

 −2 0 0
0 −10 0
0 0 −9

  0 −3 −1
−3 0 −5
−1 −5 0

  −2 −3 −1
−3 −10 −5
−1 −5 −9

 γ1 =−2,γ2 =−9,γ3 =−10
β1 = 5.429,β2 = 0.876,β3 =−6.305

α1 =−0.928,α2 =−4.903,α3 =−15.169
Yes

 −9 0 0
0 −2 0
0 0 −10

  0 −3 −1
−3 0 −5
−1 −5 0

  −9 −3 −1
−3 −2 −5
−1 −5 −10

 γ1 =−2,γ2 =−9,γ3 =−10
β1 = 5.429,β2 = 0.876,β3 =−6.305

α1 = 0.941,α2 =−8.382,α3 =−13.559
No

 −9 0 0
0 −10 0
0 0 −2

  0 −3 −1
−3 0 −5
−1 −5 0

  −9 −3 −1
−3 −10 −5
−1 −5 −2

 γ1 =−2,γ2 =−9,γ3 =−10
β1 = 5.429,β2 = 0.876,β3 =−6.305

α1 = 0.421,α2 =−7.148,α3 =−14.273
No

 −10 0 0
0 −2 0
0 0 −9

  0 −3 −1
−3 0 −5
−1 −5 0

  −10 −3 −1
−3 −2 −5
−1 −5 −9

 γ1 =−2,γ2 =−9,γ3 =−10
β1 = 5.429,β2 = 0.876,β3 =−6.305

α1 = 1.057,α2 =−8.725,α3 =−13.333
No

 −10 0 0
0 −9 0
0 0 −2

  0 −3 −1
−3 0 −5
−1 −5 0

  −10 −3 −1
−3 −9 −5
−1 −5 −2

 γ1 =−2,γ2 =−9,γ3 =−10
β1 = 5.429,β2 = 0.876,β3 =−6.305

α1 = 0.629,α2 =−7.597,α3 =−14.032
No

Table B1: Eigenvalues of C+B = A, as a function of the ordering of the diagonal entries of C. The same set
of coefficients produce different eigenvalues and stability properties for A depending on the ordering, despite
the fact that the eigenvalues of the two constituent matrices C and B are unchanged by this rearrangement.

for the very same eigenvalues of B and C, we can obtain α1 as low as −0.928, or as high as 1.057.
This is reflected in the bounds introduced above:

β1 + γS = 5.429−10 =−4.571≤ α1 ≤ β1 + γ1 = 5.429−2 = 3.429. (B25)



Intra- and interspecific competition The American Naturalist (2016), 188(1):E1-E12 Page 27

B4 Random matrices

B4.1 Symmetric matrices

Let A be an S× S matrix, constructed as follows. Each diagonal entry is set to zero. Then each
upper triangular entry is drawn from some probability distribution with mean zero, variance V , and
all moments finite. Finally, each lower triangular entry Ai j is set equal to A ji, making A symmetric.

Matrices constructed this way are called Wigner matrices. Consider now the matrix A/
√

SV .
Since it is symmetric, all eigenvalues are real. Their empirical spectral distribution, in the limit of
large S, follows the Wigner semicircle distribution:

f̃ (x) =

√
4− x2

2π
, −2≤ x≤ 2 (B26)

and 0 otherwise, where x represents the position along the real line where the eigenvalues may fall
(Bai and Silverstein 2009, Allesina and Tang 2015). The most important property of this distribution
is its universality: any underlying distribution from which the matrix entries are drawn will lead to
f̃ (x) as S→ ∞; the only constraint is a zero mean and finite higher moments. For finite S, one can
approximate the above distribution for A instead of A/

√
SV as

f (x)≈
√

4SV − x2

2πSV
, −2

√
SV ≤ x≤ 2

√
SV (B27)

and 0 otherwise, where the approximation improves with increasing S. See the left panel of Figure B3
for an example.

The requirement that all diagonal entries are zero can be relaxed. Assume the diagonal entries
have mean zero and variance Vd . By definition,

Vd =
1
S

S

∑
i=1

(A2)ii, (B28)

where (A2)i j is the (i, j)th entry of AA = A2. The variance of all matrix entries may then be written

1
S2

S

∑
i=1

S

∑
j=1

(A2)i j =
1
S2

S

∑
i=1

(A2)ii +
1

S(S−1)

S

∑
i=1

S

∑
j 6=i
(A2)i j =

Vd

S
+V. (B29)

In other words, as long as Vd does not scale with S for some reason, the contribution of the diagonal
entries’ variance to the total variance will be negligible in the large S limit, and only the offdiagonal
variance V matters. Adding diagonal variance to a large Wigner matrix therefore leaves its spectral
properties unchanged.

What happens if the diagonal entries have a nonzero mean, say, µd? (The mean of the offdiagonal
entries is still assumed to be zero.) Let I be the S× S identity matrix; A can then be written as
A = (A−µdI)+µdI. The matrix (A−µdI) has zero mean diagonal, therefore it is a Wigner matrix
for which our previous results hold. When adding the diagonal matrix µdI to this, µd is simply
added to each eigenvalue.2 The eigenvalue distribution in the large S limit therefore reads

f (x) =

√
4SV − (x−µd)2

2πSV
, −2

√
SV ≤ x−µd ≤ 2

√
SV (B30)

2The eigenvalues of A are, by definition, numbers λ satisfying det(A−λ I) = 0. The eigenvalues of A+ µdI are
numbers λ ′ satisfying det(A+µdI−λ ′I) = det(A− (λ ′−µd)I) = 0. Therefore λ = λ ′−µd , or λ ′ = λ +µd .
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Figure B3: Left panel: eigenvalue distribution (blue histogram) of a Wigner random matrix with S = 1000,
V = 1, and the entries drawn from a normal distribution. The red curve is the analytical prediction of
Eq. (B27). Right panel: eigenvalue distribution (blue histogram) of a symmetric random matrix with
S = 1000, µ = −1/10, V = 1, µd = 0, Vd = 1, and all entries drawn from a normal distribution. The
red curve is the analytical prediction based on Eq. (B32); the single outlier eigenvalue is predicted to be
at (S− 1)µ + 0+V/µ = −109.9. Notice also that the variance of the diagonal entries is as large as the
offdiagonal variance, yet this has no discernible effect on the eigenvalue distribution (the red semicircle’s
prediction is still almost perfect).

and 0 otherwise.
Finally, one can consider the case when the offdiagonal entries also have a nonzero mean µ . Let

E be the S×S matrix with all entries equal to one; then we can write

A = (A−µdI−µE+µI)+µdI+µE−µI. (B31)

In the parentheses, we first shift the diagonal to have zero mean, then we shift the matrix so that its
offdiagonal entries have zero mean, but in the process also affect the diagonal—the final term restores
it back to have zero mean. The matrix in parentheses is therefore a Wigner matrix, its eigenvalue
distribution given by the Wigner semicircle distribution. The matrix µdI−µI = (µd−µ)I simply
adds µd−µ to each eigenvalue. Finally, note that E can be written as the outer product of the vector
(1, 1, . . . , 1) (a vector of all ones) with itself—that is, E is a rank-one matrix. According to the
theory of low-rank perturbations to random matrices (O’Rourke and Renfrew 2014), the effect of
adding µE is to make one single eigenvalue assume the value Sµ +V/µ (for S large, the second
term is negligible).3 The shape of the rest of the eigenvalue distribution remains unchanged. The
final form of the empirical spectral distribution for a symmetric random matrix with offdiagonal
mean and variance µ , V and diagonal mean and variance µd , Vd therefore reads

f (x) =

√
4SV − (x−µd +µ)2

2πSV
, −2

√
SV ≤ x−µd +µ ≤ 2

√
SV (B32)

3Technical conditions hold on whether this outlier is actually present (see O’Rourke and Renfrew 2014). In essence: it
will be, as long as µ is large enough to make the single modified eigenvalue isolated from the rest of the distribution. See
the right panel of Figure B3 for an example.
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and 0 otherwise, except for a single outlier eigenvalue equal to (S−1)µ +µd +V/µ (only present
if µ is large enough for it to be separated from the bulk). See the right panel of Figure B3 for an
example.

B4.2 Nonsymmetric matrices

The Wigner semicircle distribution holds only for symmetric random matrices. More generally, one
may consider the nonsymmetric random matrix A, constructed as follows. First, each diagonal entry
is set to zero. Then each pair of entries (Ai j,A ji) are sampled from a bivariate distribution with zero
marginal means, marginal variances V , and pairwise correlation ρ . All moments of the bivariate
distribution are assumed finite.

Matrices constructed this way are called elliptic matrices. According to the elliptic law (Sommers
et al. 1998, O’Rourke and Renfrew 2014), the eigenvalues of A/

√
SV are uniformly distributed in

an ellipse in the complex plane, with horizontal and vertical semiaxes 1±ρ . For finite but large
S, the eigenvalues of A are distributed uniformly in an ellipse with horizontal/vertical semiaxes√

SV (1±ρ) (Figure B4, left panel). Just as in the symmetric case, the elliptic law is universal: any
bivariate distribution with the same marginal variances and correlation will result in the eigenvalues
being distributed in the same ellipse.
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Figure B4: Left panel: eigenvalues (yellow points) of an elliptic random matrix with S = 1000, and all pairs
(Ai j,A ji) sampled from a bivariate normal distribution with µ = 0, V = 1, and ρ = 1/4. The blue ellipse is the
analytical prediction for the region where the eigenvalues are uniformly distributed. Right panel: eigenvalues
(yellow points) of an elliptic random matrix with S = 1000, and all pairs (Ai j,A ji) sampled from a bivariate
normal distribution with µ = −1/20, V = 1, and ρ = 1/4. The blue ellipse and circle are the analytical
prediction; the single outlier eigenvalue is predicted to be at (S−1)µ +0+ρV/µ =−54.95.

The generalizations that we performed in the symmetric case carry over to the nonsymmetric
case as well, as there is nothing in these generalizations that is specific to Wigner matrices. Therefore,
if the bivariate distribution has mean µ , and the diagonal entries have mean µd and variance Vd , the
eigenvalues will be uniformly distributed in an ellipse with horizontal/vertical semiaxes

√
SV (1±ρ)

centered at µd− µ +0
√
−1 in the complex plane, and there will be a single outlying eigenvalue

at (S− 1)µ + µd +ρV/µ (note that now ρ is multiplying the last term). See the right panel of
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Figure B4 for an example. Finally, note that Wigner matrices are really just a special case of elliptic
matrices: a Wigner matrix is an elliptic one with ρ = 1.

B5 Maximizing/minimizing the rightmost eigenvalue

Here we describe the algorithm we used to find the arrangement of interspecific interaction strengths
that optimized (either maximized or minimized) the largest (rightmost) eigenvalue of B. (Since all
eigenvalues are real, the rightmost one is necessarily the largest in value, though not necessarily
in magnitude.) We used the same algorithm to find the arrangement of intraspecific effects in C
maximizing/minimizing the rightmost eigenvalue of A = B+C for a fixed B, with some minor
differences in parameterization described below.

For optimizing the rightmost eigenvalue of B, we used a population of 5000 matrices in any
one generation of a genetic algorithm. For reproduction, first 4900 pairs of matrices were drawn
randomly with replacement. From each pair we picked the matrix that had the more optimal
rightmost eigenvalue, and put that matrix into the next generation. The remaining 100 matrices
were direct copies of the most optimal matrix of the previous generation (elite reproduction). After
reproduction, each matrix in the next generation was mutated by swapping two entries in the upper
triangular part, and the corresponding two in the lower triangle to keep the matrix symmetric. The
algorithm was run for 500,000 generations, after which the matrix with the most optimal largest
eigenvalue was taken to be the candidate for the final solution. We then ran a hill-climbing algorithm
starting from this matrix to explore the matrices in the direct vicinity of our candidate solution.
We generated 5000 mutant matrices, and only the most optimal one of the 5000 was kept at every
generation in the algorithm. We repeated this until no better solutions were found in 5000 further
generations. The most optimal matrix we found via the hill-climber was then taken as our final
solution.

We did the same when finding the optimal largest eigenvalue of A as a function of the arrange-
ment of its diagonal part C (with B fixed), except that we ran the genetic algorithm only for 50,000
generations, and that a mutation event was defined by swapping two randomly chosen diagonal
entries. Just as before, we ran a hill-climbing algorithm on the best solution found by the genetic
algorithm to try to further improve on that solution. We did this in the same way as in the offdiagonal
case, except, instead of generating only 5000 mutants, we generated all possible mutations in every
generation of the hill-climber. Because of this, the algorithm could be stopped the moment no better
solutions were found in a generation, instead of waiting for 5000 further steps without improvement.

For each optimization, both diagonal and offdiagonal, we performed 10 separate optimization
runs, each with a different random seed, to make sure they ended up with the same results.

The source code and documentation for an implementation of this algorithm, written in C, can
be downloaded from https://github.com/dysordys/intra-inter. For reference, we also
provide the code listing right here.

1 /*///////////////////////////////// TO COMPILE /////////////////////////////////
2
3 gcc [Code File] -Wall -O3 -DHAVE_INLINE -lgsl -lgslcblas -o [Out File]
4
5 //////////////////////////////////// TO RUN ////////////////////////////////////
6
7 ./[Out File] [matrix size (int)] // number of species

https://github.com/dysordys/intra-inter
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8 [input filename (string)] // file storing the matrix
9 [seed (int)] // seed for random number generator

10 [maximize (1 or -1)] // are we maximizing (1) or minimizing (-1)?
11 [para1 (int)] // first parameter for search algorithm
12 [para2 (int)] // second parameter for search algoritm
13 [BvsC (0 or 1)] // mutate offdiagonal (1) or diagonal (0)?
14 [SearchAlg (1 or 2)] // Genetic algoritm (1) or Hill climber (2)?
15
16 //////////////////////////////////// OUTPUT ////////////////////////////////////
17
18 A file containing a modified matrix. The name of the file is that of the input
19 file with a modified extension depending on the values of maximize and BvsC.
20
21 //////////////////////////////////////////////////////////////////////////////*/
22
23 // Standard Libraries
24 #include <stdio.h>
25 #include <string.h>
26 #include <math.h>
27
28 // Matrices, vectors, eigenvalues
29 #include <gsl/gsl_math.h>
30 #include <gsl/gsl_vector.h>
31 #include <gsl/gsl_matrix.h>
32 #include <gsl/gsl_eigen.h>
33 #include <gsl/gsl_sort_vector.h>
34 #include <gsl/gsl_blas.h>
35
36 // Random number generation and random distributions
37 #include <gsl/gsl_rng.h>
38 #include <gsl/gsl_randist.h>
39
40 // Set multiplier for eigenvalues to increase difference
41 #define EIGMULT 10.0
42
43 // Global variables
44 int n;
45 int npairs;
46 gsl_vector * eval;
47 gsl_matrix * M;
48 gsl_matrix * A;
49 gsl_vector * diagonal;
50 gsl_matrix * pairs;
51 gsl_matrix * indices;
52 gsl_eigen_symm_workspace * w;
53
54
55 //////////////////// Functions for reading/writing matrices ////////////////////
56 // read a matrix stored in filename and assign to M
57 // M is initialized in the process
58 gsl_matrix * read_matrix(int n,
59 char * filename){
60 gsl_matrix * M = gsl_matrix_calloc(n, n);
61 FILE * F;
62 F = fopen(filename, "rb");
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63 gsl_matrix_fscanf(F, M);
64 fclose(F);
65 return M;
66 }
67
68 int initialize_structures(char * filename){
69 M = gsl_matrix_calloc(n, n);
70 FILE * F;
71 F = fopen(filename, "rb");
72 gsl_matrix_fscanf(F, M);
73 fclose(F);
74
75 // Now initialize all the variables needed for the eigenvalue search
76 npairs = n * (n - 1) / 2;
77 A = gsl_matrix_calloc(n, n);
78 eval = gsl_vector_alloc(n);
79 w = gsl_eigen_symm_alloc(n);
80 pairs = gsl_matrix_calloc(npairs, 2);
81 indices = gsl_matrix_calloc(npairs, 2);
82 diagonal = gsl_vector_calloc(n);
83 int i, j, k;
84 k = 0;
85 for (i = 0; i < n; i++){
86 for (j = i; j < n; j++){
87 if (j == i){
88 gsl_vector_set(diagonal, j, gsl_matrix_get(M, j, j));
89 }
90 else {
91 gsl_matrix_set(pairs, k, 0, gsl_matrix_get(M, i, j));
92 gsl_matrix_set(pairs, k, 1, gsl_matrix_get(M, j, i));
93 gsl_matrix_set(indices, k, 0, i);
94 gsl_matrix_set(indices, k, 1, j);
95 k++;
96 }
97 }
98 }
99 return 0;

100 }
101
102 int free_structures(){
103 gsl_matrix_free(M);
104 gsl_matrix_free(A);
105 gsl_matrix_free(pairs);
106 gsl_matrix_free(indices);
107 gsl_vector_free(diagonal);
108 gsl_vector_free(eval);
109 gsl_eigen_symm_free(w);
110 return 0;
111 }
112
113 // print a matrix either to a file or to a stream
114 int print_matrix(FILE * F,
115 gsl_matrix * M){
116 int i, j;
117 for (i = 0; i < n; i++){
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118 for (j = 0; j < n; j++){
119 fprintf(F, "%f ", gsl_matrix_get(M, i, j));
120 }
121 fprintf(F, "\n");
122 }
123 return 0;
124 }
125
126 ///////////////////////// Functions for random numbers /////////////////////////
127 int random_setup(gsl_rng ** r, int seed){
128 const gsl_rng_type * T;
129 gsl_rng_env_setup();
130 T = gsl_rng_default;
131 *r = gsl_rng_alloc(T);
132 gsl_rng_set (*r, seed);
133 return 0;
134 }
135
136 int random_free(gsl_rng ** r){
137 gsl_rng_free(*r);
138 return 0;
139 }
140
141 /////////////////////// Functions for mutating matrices ////////////////////////
142 // Mutate the matrix M by swapping two coefficients in the
143 // upper-triangular part and the corresponding lower-triangular
144 // coefficients as well, to keep symmetry
145 int mutate_off_diagonal(int n,
146 gsl_rng * r,
147 gsl_matrix * M){
148 int i = gsl_rng_uniform_int(r, n);
149 int j = gsl_rng_uniform_int(r, n);
150 while(j == i){
151 j = gsl_rng_uniform_int(r, n);
152 }
153 int k = gsl_rng_uniform_int(r, n);
154 int l = gsl_rng_uniform_int(r, n);
155 while(k == l){
156 l = gsl_rng_uniform_int(r, n);
157 }
158 double tmp;
159 tmp = gsl_matrix_get(M, i, j);
160 gsl_matrix_set(M, i, j, gsl_matrix_get(M, k, l));
161 gsl_matrix_set(M, k, l, tmp);
162
163 tmp = gsl_matrix_get(M, j, i);
164 gsl_matrix_set(M, j, i, gsl_matrix_get(M, l, k));
165 gsl_matrix_set(M, l, k, tmp);
166 return 0;
167 }
168
169 // Mutate by swapping two elements on the diagonal
170 int mutate_diagonal(int n,
171 gsl_rng * r,
172 gsl_matrix * M){
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173
174 int i = gsl_rng_uniform_int(r, n);
175 int j = i;
176 while(j == i){
177 j = gsl_rng_uniform_int(r, n);
178 }
179 double tmp;
180 tmp = gsl_matrix_get(M, i, i);
181 gsl_matrix_set(M, i, i, gsl_matrix_get(M, j, j));
182 gsl_matrix_set(M, j, j, tmp);
183 return 0;
184 }
185
186 //////////////////// Functions for calculating eigenvalues /////////////////////
187 // Setup the environment for computing the eigenvalues
188 int eigenvalues_setup(int n,
189 gsl_matrix ** tmpM,
190 gsl_vector ** eval,
191 gsl_eigen_symm_workspace ** w){
192 // Allocate temporary matrix for calculations
193 *tmpM = gsl_matrix_calloc(n, n);
194 // Allocate vector for storing eigenvalues
195 *eval = gsl_vector_calloc(n);
196 // Allocate workspace for eigenvalue calculation
197 *w = gsl_eigen_symm_alloc(n);
198 return 0;
199 }
200
201 // Free memory associated with eigenvalues
202 int eigenvalues_free(gsl_matrix ** tmpM,
203 gsl_vector ** eval,
204 gsl_eigen_symm_workspace ** w){
205 gsl_matrix_free(*tmpM);
206 gsl_vector_free(*eval);
207 gsl_eigen_symm_free(*w);
208 return 0;
209 }
210
211 // Find the largest eigenvalue of the symmetric matrix M
212 double find_max_eigen(gsl_matrix * M,
213 gsl_matrix * tmpM,
214 gsl_vector * eval,
215 gsl_eigen_symm_workspace * w){
216 // Copy the matrix M, as it will be destroyed
217 gsl_matrix_memcpy(tmpM, M);
218 // Find the eigenvalues
219 gsl_eigen_symm(tmpM, eval, w);
220 // return the maximum eigenvalue
221 return gsl_vector_max(eval);
222 }
223
224 int build_A(gsl_vector * solution, gsl_vector * diag){
225 // build matrix A
226 int i;
227 gsl_matrix_set_zero(A);
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228 for (i = 0; i < npairs; i++){
229 gsl_matrix_set(A, gsl_matrix_get(indices, gsl_vector_get(solution, i), 0),
230 gsl_matrix_get(indices, gsl_vector_get(solution, i), 1),
231 gsl_matrix_get(pairs, i, 1));
232 gsl_matrix_set(A, gsl_matrix_get(indices, gsl_vector_get(solution, i), 1),
233 gsl_matrix_get(indices, gsl_vector_get(solution, i), 0),
234 gsl_matrix_get(pairs, i, 0));
235 }
236 for (i = 0; i < n; i++){
237 gsl_matrix_set(A, i, i, gsl_vector_get(diag, i));
238 }
239 return 0;
240 }
241
242 double find_leading_eigen(gsl_vector * solution, gsl_vector * diag){
243 build_A(solution, diag);
244 // always find the eigenvalues of A;
245 // it is destroyed by the operation
246 gsl_eigen_symm(A, eval, w);
247 // return the maximum eigenvalue
248 return gsl_vector_max(eval);
249 }
250
251 ////////////////////// Functions to Run Search Algorithms //////////////////////
252 int GeneticAlgorithm (int n, // number of species
253 char * filename, // file storing the matrix
254 int seed,
255 int maximize,
256 int npop,
257 int ngen,
258 int BvsC){ // 1 for offdiagonal optimization, 0 for diagonal
259 int i = 0;
260 // initialize structures
261 fprintf(stderr, "Initializing\n");
262 i = initialize_structures(filename);
263
264 gsl_rng * r = NULL;
265 i = random_setup(&r, seed);
266
267 if (maximize == 1) {
268 fprintf(stderr, "GA to Maximize\n");
269 }
270 else if (maximize == -1) {
271 fprintf(stderr, "GA to Minimize\n");
272 }
273 gsl_vector * bestsol = gsl_vector_calloc(npairs);
274 gsl_vector * bestdiag = gsl_vector_calloc(n);
275 double bestfit = 0.0;
276
277 for (i = 0; i < npairs; i++){
278 gsl_vector_set(bestsol, i, i);
279 }
280 gsl_vector_memcpy(bestdiag, diagonal);
281
282 bestfit = maximize * find_leading_eigen(bestsol, bestdiag);
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283 fprintf(stderr, "Original Matrix: %f\n", maximize * bestfit);
284
285 gsl_vector * popsol[npop];
286 gsl_vector * popdiag[npop];
287 gsl_vector * pop2sol[npop];
288 gsl_vector * pop2diag[npop];
289
290 // initialize populations
291 for (i = 0; i < npop; i++){
292 popsol[i] = gsl_vector_calloc(npairs);
293 popdiag[i] = gsl_vector_calloc(n);
294
295 pop2sol[i] = gsl_vector_calloc(npairs);
296 pop2diag[i] = gsl_vector_calloc(n);
297
298 gsl_vector_memcpy(popsol[i], bestsol);
299 gsl_vector_memcpy(popdiag[i], bestdiag);
300
301 gsl_ran_shuffle(r, popsol[i]->data, n, sizeof (double));
302 gsl_ran_shuffle(r, popdiag[i]->data, n, sizeof (double));
303 }
304
305 gsl_vector * fitness = gsl_vector_calloc(npop);
306 int j, dad, mom, k1, k2;
307 double tmp;
308 for (i = 0; i < ngen; i++){
309 // compute fitness and save best sol
310 for (j = 0; j < npop; j++){
311 tmp = maximize * find_leading_eigen(popsol[j], popdiag[j]);
312 gsl_vector_set(fitness, j, tmp);
313 if (tmp > bestfit){
314 bestfit = tmp;
315 if (BvsC == 1){
316 gsl_vector_memcpy(bestsol, popsol[j]);
317 }
318 else {
319 gsl_vector_memcpy(bestdiag, popdiag[j]);
320 }
321 fprintf(stderr, "%d %f\n", i, maximize * bestfit);
322 }
323 }
324 // reproduce
325 for (j = 0; j < npop; j++){
326 if (j < 50){
327 if (BvsC == 1){
328 gsl_vector_memcpy(pop2sol[j], bestsol);
329 }
330 else {
331 gsl_vector_memcpy(pop2diag[j], bestdiag);
332 }
333 }
334 else{
335 dad = gsl_rng_uniform_int(r, npop);
336 mom = gsl_rng_uniform_int(r, npop);
337 if (gsl_vector_get(fitness, dad) > gsl_vector_get(fitness, mom)){
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338 if (BvsC == 1){
339 gsl_vector_memcpy(pop2sol[j], popsol[dad]);
340 }
341 else {
342 gsl_vector_memcpy(pop2diag[j], popdiag[dad]);
343 }
344 }
345 else {
346 if (BvsC == 1){
347 gsl_vector_memcpy(pop2sol[j], popsol[mom]);
348 }
349 else {
350 gsl_vector_memcpy(pop2diag[j], popdiag[mom]);
351 }
352 }
353 }
354 // mutation
355 if (BvsC == 1){
356 k1 = gsl_rng_uniform_int(r, npairs);
357 k2 = gsl_rng_uniform_int(r, npairs);
358 while (k1 == k2) {
359 k2 = gsl_rng_uniform_int(r, npairs);
360 }
361 tmp = gsl_vector_get(pop2sol[j], k1);
362 gsl_vector_set(pop2sol[j], k1, gsl_vector_get(pop2sol[j], k2));
363 gsl_vector_set(pop2sol[j], k2, tmp);
364 }
365 else {
366 k1 = gsl_rng_uniform_int(r, n);
367 k2 = gsl_rng_uniform_int(r, n);
368 while (k1 == k2) {
369 k2 = gsl_rng_uniform_int(r, n);
370 }
371 tmp = gsl_vector_get(pop2diag[j], k1);
372 gsl_vector_set(pop2diag[j], k1, gsl_vector_get(pop2diag[j], k2));
373 gsl_vector_set(pop2diag[j], k2, tmp);
374 }
375 }
376 // copy over
377 for (j = 0; j < npop; j++){
378 if (BvsC == 1){
379 gsl_vector_memcpy(popsol[j], pop2sol[j]);
380 }
381 else {
382 gsl_vector_memcpy(popdiag[j], pop2diag[j]);
383 }
384 }
385
386 }
387
388 FILE * F;
389 char OutFileName[1000];
390 if (BvsC == 1) {
391 if (maximize == 1){
392 sprintf(OutFileName,"%s.Bmax--%d", filename, seed);



Intra- and interspecific competition The American Naturalist (2016), 188(1):E1-E12 Page 38

393 }
394 if (maximize == -1){
395 sprintf(OutFileName,"%s.Bmin--%d", filename, seed);
396 }
397 } else {
398 if (maximize == 1){
399 sprintf(OutFileName,"%s.max--%d", filename, seed);
400 }
401 if (maximize == -1){
402 sprintf(OutFileName,"%s.min--%d", filename, seed);
403 }
404 }
405 F = fopen(OutFileName, "wb");
406 build_A(bestsol, bestdiag);
407 print_matrix(F, A);
408 fclose(F);
409
410 gsl_vector_free(bestsol);
411
412 for (i = 0; i < npop; i++){
413 gsl_vector_free(popsol[i]);
414 gsl_vector_free(pop2sol[i]);
415 }
416 gsl_vector_free(fitness);
417
418 free_structures();
419 random_free(&r);
420 return 0;
421 }
422
423 // Hill-climber with multiple sampling at each step to find the matrix structure
424 // that maximizes or minimizes the leading eigenvalue
425 int HillClimb (int n, // number of species
426 char * filename, // file storing the matrix
427 int num_steps, // number of steps without improvement before quitting
428 int num_try, // number of solutions to try at each step
429 int seed, // random seed
430 int maximize, // 1 to maximize, -1 to minimize
431 int BvsC){ // mutate diagonal (0) or off-diagonal (1)
432 int i = 0;
433 double fit = 0.0;
434
435 // read in the matrix
436 gsl_matrix * M = NULL;
437 M = read_matrix(n, filename);
438
439 // initialize the random number generator
440 gsl_rng * r = NULL;
441 i = random_setup(&r, seed);
442
443 // setup eigenvalues
444 gsl_matrix * tmpM = NULL; // temporary matrix for eigenvalue calculation
445 gsl_vector * eval = NULL; // vector for storing eigenvalues
446 gsl_eigen_symm_workspace * w = NULL; // workspace for eigenvalues
447 i = eigenvalues_setup(n, &tmpM, &eval, &w);
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448
449 // SPECIFIC TO HC
450 fprintf(stderr, "starting HC of leading eigenvalue with %d steps,
451 %d tries per step\n", num_steps, num_try);
452
453 gsl_matrix * M1 = gsl_matrix_calloc(n, n);
454 gsl_matrix * M2 = gsl_matrix_calloc(n, n);
455
456
457 fit = find_max_eigen(M, tmpM, eval, w);
458
459 double fit1 = fit;
460 double fit2 = fit;
461
462 int how_many_steps = 0;
463 int counter = 0;
464 while(how_many_steps < num_steps){
465 counter++;
466 how_many_steps++;
467 gsl_matrix_memcpy(M1, M);
468 fit1 = fit;
469 // now mutate several times and save the best
470 for (i = 0; i < num_try; i++){
471 gsl_matrix_memcpy(M2, M);
472 if (BvsC == 1){
473 mutate_off_diagonal(n, r, M2);
474 }
475 else {
476 mutate_diagonal(n, r, M2);
477 }
478 fit2 = find_max_eigen(M2, tmpM, eval, w);
479 if ((fit1 - fit2) * maximize < 0){
480 // we have a better solution
481 fit1 = fit2;
482 gsl_matrix_memcpy(M1, M2);
483 }
484 }
485 if ((fit - fit1) * maximize < 0){
486 // accept the move
487 fit = fit1;
488 gsl_matrix_memcpy(M, M1);
489 how_many_steps = 0;
490 fprintf(stderr, "step %d -- new best solution: %.6f\n", counter, fit);
491 }
492 else if ((counter % 1000) == 0){
493 fprintf(stderr, "step %d\n", counter);
494 }
495 }
496
497 gsl_matrix_free(M1);
498 gsl_matrix_free(M2);
499
500 // END SPECIFIC TO HC
501
502 // Stuff for output
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503 char OutFileName[1000];
504 char FileNameRoot[1000];
505 char *dotBm;
506 strcpy(FileNameRoot, filename);
507 dotBm = strrchr(FileNameRoot, ’.’);
508 *dotBm = ’\0’;
509 // Save the results
510 if (maximize == 1) {
511 if (BvsC == 1) {
512 sprintf(OutFileName,"%s.Bmax--%d", FileNameRoot, seed);
513 }
514 else{
515 sprintf(OutFileName,"%s.max--%d", FileNameRoot, seed);
516 }
517
518 } else if (maximize == -1) {
519 if (BvsC == 1) {
520 sprintf(OutFileName,"%s.Bmin--%d", FileNameRoot, seed);
521 }
522 else{
523 sprintf(OutFileName,"%s.min--%d", FileNameRoot, seed);
524 }
525 }
526
527 int l, m;
528 FILE * F = fopen(OutFileName,"w");
529 for (l = 0; l < n; l++){
530 for (m = 0; m < n; m++){
531 fprintf(F, "%f ", gsl_matrix_get(M, l, m));
532 }
533 fprintf(F, "\n");
534 }
535 fclose(F);
536 // free matrix M
537 gsl_matrix_free(M);
538 // free eigenvalue-related variables
539 i = eigenvalues_free(&tmpM, &eval, &w);
540 // free random number generator
541 i = random_free(&r);
542 return 0;
543 }
544
545
546 int main (int argc, char *argv[]){
547 n = atoi(argv[1]); // number of species
548 char * filename = argv[2]; // file storing the matrix
549 int seed = atoi(argv[3]); // seed for random number generator
550 int maximize = atoi(argv[4]); // are we maximizing (1) or minimizing (-1)?
551 int para1 = atoi(argv[5]); // first parameter for search algorithm
552 int para2 = atoi(argv[6]); // second parameter for search algoritm
553 int BvsC = atoi(argv[7]); // what to mutate: 1 for offdiagonal, 0 for diagonal
554 int SearchAlg = atoi(argv[8]); // Genetic algoritm (1) or Hill climber (2)?
555
556 if (SearchAlg == 1) {
557 GeneticAlgorithm (n, filename, seed, maximize, para1, para2, BvsC);
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558 }
559 else if (SearchAlg == 2) {
560 HillClimb (n, filename, para1, para2, seed, maximize, BvsC);
561 }
562 return(0);
563 }

B6 Explaining the pattern of intraspecific interactions leading to the
largest and smallest rightmost eigenvalue

Here we show that the patterns of intraspecific coefficients on Figure 1 of the main text are generic
and expected to hold in all cases, except when the variance Vd of the diagonal entries is large. As
explained in Section B3, A is the interaction matrix, decomposed as A = B+C, where B is the
matrix of interspecific and C the diagonal matrix of intraspecific effects. The rightmost eigenvalue
of A is α1, and that of B is β1. Summarizing the patterns of C’s diagonal entries to be explained
(Figure 1 in main text):

1. (maxβ1, maxα1): The strength (absolute value) of the diagonal entries first increases, then
decreases, approximately forming a V-shape.

2. (maxβ1, minα1): The strength of the diagonal entries first decreases, then increases, approxi-
mately forming an upside-down V-shape.

3. (random β1, maxα1): The strength of the diagonal entries first increases, then decreases,
approximately forming a V-shape. This V-shape is less pronounced, “fuzzier”, than in the
maximum β1 case.

4. (random β1, minα1): The strength of the diagonal entries first decreases, then increases, ap-
proximately forming an upside-down V-shape. This upside-down V-shape is less pronounced
than in the maximum β1 case.

5. (minβ1, maxα1): The strength of the diagonal entries increases monotonically with the
variance of the corresponding species’ interspecific coefficients. That is, species 1 will have
the strongest and species S the weakest intraspecific coefficient, provided that the variance of
the offdiagonal entries is largest in the first row and smallest in the Sth.

6. (minβ1, minα1): The strength of the diagonal entries roughly decreases with the variance of
the corresponding species’ interspecific coefficients, but this decrease is not necessarily strict
or monotonic.

These patterns can be explained via standard eigenvalue sensitivity theory. We have A =
B+C. Let us write C as the mean intraspecific interaction µd plus the deviation from the mean:
C = (C− µdI)+ µdI, where I is the identity matrix. With the notation ∆C = C− µdI, we have
A = B+µdI+∆C. The eigenvalues of B+µdI are the eigenvalues of B plus µd (see Section B4),
and the eigenvectors remain unchanged. We therefore only need to determine the effect of ∆C to



Intra- and interspecific competition The American Naturalist (2016), 188(1):E1-E12 Page 42

obtain α1. This we can do, to a first-order approximation, by writing the eigenvalues of A as those
of B+µdI plus a correction imposed by the perturbing matrix ∆C:

α1 ≈ (β1 +µd)+w∆Cw, (B33)

where w is the eigenvector corresponding to α1. Here we used the general sensitivity formula
for eigenvalues (e.g., Caswell 2001, chapter 9); note that, because B is symmetric, the left and
right eigenvectors are identical. Since C is diagonal, the product w∆Cw can be written w2

1∆C11 +
w2

2∆C22 + · · ·+w2
S∆CSS, so we have

α1 ≈ (β1 +µd)+
S

∑
i=1

w2
i ∆Cii. (B34)

Therefore, maximizing/minimizing α1 is equivalent to maximizing/minimizing the sum on the right
hand side. The coefficients w2

i are always nonnegative while the Cii are both negative and positive
(since they are the deviations from the mean intraspecific interaction strength). Maximization
(minimization) of the sum is therefore achieved by pairing up large values of w2

i with large (small)
entries of ∆Cii, and small values of w2

i with small (large) entries of ∆Cii.
In the maximum β1 case (1. and 2. above), species are sorted in increasing order of the compo-

nents of the eigenvector w corresponding to the rightmost eigenvalue β1 of B. It is therefore both
the vector corresponding to the eigenvalue to be perturbed and also the one based on which the
species are ordered. Due to this fact, we have w1 ≤ w2 ≤ . . .≤ wS. Note that w is the eigenvector
belonging to the rightmost and not the dominant eigenvalue; and since only the dominant eigenvector
can have components with all the same sign, w will necessarily have both positive and negative
components (a simple corollary of the Perron–Frobenius theorem). Because of this, it is not true
that w2

1 ≤ w2
2 ≤ . . .≤ w2

S. Instead, the w2
i first decrease, then increase as i runs from 1 to S, forming

a V-shape (Figure B5, top row). Then, to maximize α1, the largest ∆Cii should be paired with the
largest w2

i , leading to a diagonal that also follows a V-shape—which is precisely what we see in the
cases of maximizing α1 with either a random or maximal β1. In turn, α1 is minimized when the
smallest ∆Cii are paired up with the largest w2

i , leading to the upside-down V-shape.
We still see these arrangements in the random cases (3. and 4. above), though they are less

pronounced than in the maximum β1 case. Since the matrix B is random, one might wonder why
we see a pattern at all. The reason is that species are still ordered based on the leading eigenvector.
Therefore, despite the randomness, matrix entries tend to increase towards the upper-right and
lower-left corners of the matrices, though this increase is no longer strictly monotonic. This means
that the broad pattern is retained, but it is expected to be fuzzier than before, which is exactly what
we see.

Finally, in the minimum β1 cases (5. and 6. above), species are ordered not by the leading but
by the dominant eigenvector (i.e., the one belonging to the eigenvalue that is largest in magnitude,
not in value). Since the matrix A is negative, the Perron–Frobenius theorem applies to −A,
and so the leading eigenvector can be chose to have all negative components. When ordering
species based on it, we have w1 ≤ w2 ≤ . . . ≤ wS, and since all wi are negative, it follows that
w2

1 ≥ w2
2 ≥ . . .≥ w2

S (Figure B5, bottom row). Therefore, were our goal to maximize (minimize)
this eigenvalue instead of the leading one, ∆Cii would have to be arranged in decreasing (increasing)
order. When maximizing/minimizing the dominant eigenvalue, keep in mind that the mean and the
variance of A’s eigenvalue distribution does not change by swapping diagonal entries. Therefore,
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Figure B5: Eigenvectors’ components sorted in increasing order, and the squared components in that same
order. Top: the leading eigenvector has both negative and positive entries. The squared components will
therefore first decrease, then increase. Bottom: the dominant eigenvector can be chosen all-negative by the
Perron–Frobenius theorem. Its squared components therefore monotonically decrease.

maximizing (minimizing) this eigenvalue will cause all the other S−1 eigenvalues to a) shift very
slightly in the negative (positive) direction to retain the mean, and b) to reduce (increase) their
spread to retain the variance. The shift in the mean is going to be negligible for S sufficiently large,
therefore the change in the spread of the S−1 other eigenvalues will determine whether the leading
(not the dominant!) eigenvalue will increase or decrease. It decreases when their spread decreases,
and vice versa. Therefore, minimizing the dominant eigenvalue is expected to also minimize the
leading eigenvalue, and conversely, maximizing the leading eigenvalue will maximize the dominant
one, leading to the observed patterns.

In the random and minimum β1 cases, there is an extra complication when minimizing α1.
Since many eigenvalues have very similar values, minimizing the leading eigenvalue may cause it
to cross other eigenvalues. It therefore ceases to be the leading eigenvalue. To truly minimize the
rightmost eigenvalue, an appropriate linear combination of eigenvectors must be considered, which
may confound the simple patterns described above. This is seen in Figure 1 of the main text: for
minimum β1 and α1, the decrease in the magnitude of interaction strengths is not quite monotonic.

As a final note, the argument of this section relied on the linear eigenvalue perturbation formula,
Eq. (B33). Thus, one expects it to hold if the entries of the perturbing matrix ∆C are not too large in
magnitude compared to those of B+µdI. Deviations from the expected pattern may happen if ∆C
has very strong entries, i.e., if the diagonal variance Vd is too large. However, even in those cases,
the general shapes predicted by our argument hold up (see the Supplementary Figures S1–S20).
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B7 Calculating the domain of feasibility

The coexistence equilibrium n̂ =−A−1b of the Lotka–Volterra model is feasible if all equilibrium
densities are positive (Section B1). For a given interaction matrix A, the direction of b determines
feasibility but not its magnitude, because if n̂ = −A−1b > 0, then so is η n̂ = −A−1(ηb) for an
arbitrary positive constant η (Section B2). To evaluate feasibility, we can therefore determine the
number of directions of b that lead to a feasible solution, out of all possible directions. We call this
quantity Ξ:

Ξ =
(number of directions of b leading to a feasible coexistence equilibrium)

(all possible directions of b in the positive orthant)
. (B35)

Restricting the possible directions of b to the positive orthant is equivalent to assuming that all
intrinsic growth rates are positive. Since the system is competitive, no coexistence is possible
without this assumption in the first place. One can evaluate Ξ analytically for two (Section B2.2) and
three (Svirezhev and Logofet 1983, pp. 203-204) species. For more than three species, no known
closed-form solutions exist. In lieu of an analytical formula, Grilli et al. (2015) provide an accurate
and efficient method for calculating Ξ by numerically evaluating the integral

Ξ =
2S Γ(S/2) |det(A)|

2πS/2

∫
Ω+

(
S

∑
i=1

S

∑
j=1

S

∑
k=1

biAkiAk jb j

)−S/2

db1 db2 · · · dbS. (B36)

Here S is the number of species, Γ(·) is the Gamma function, det(A) is A’s determinant, Ω+ is the
part of the S-dimensional unit sphere’s surface that falls in the positive orthant, b1, . . . ,bS are the
components of b normalized so that the vector has length 1 (i.e., b always lies on the unit sphere’s
surface within the positive orthant), and Ai j is the (i, j)th entry of A. To obtain our feasibility results,
we numerically evaluated this integral via the Monte Carlo method.

An increasing number of species S has a trivial dimensional effect on the fraction of feasible
directions Ξ. If half the total angle per direction in an S-species system is feasible, then by Eq. (B35)
we get Ξ = 2−S. But, although the total fraction of feasible directions is decreasing, the fraction of
feasible directions per dimension stays the same, 1/2. For this reason, we use S

√
Ξ instead of Ξ to

quantify feasibility, which is a measure of the (geometric) average fraction of feasible directions
per dimension. It also has the advantage of allowing for the comparison of systems with different
numbers of species S.
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Supplementary Figures

The figures below (Figures S1–S20) show that the results reported in the main text are robust across
various parameterizations. The first three of each parameterization read exactly like Figures 1–3 in
the main text, except for the set of intra- and interspecific coefficients, which we report in the figure
captions. The additional two figures of each parameterization show the relationship of the leading
eigenvalue of the most/least stabilized configuration of coefficients with respect to a distribution
generated by randomly assorting those coefficients.
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Figure S2: As Figure 2 in the main text, except with the three interspecific interaction matrices in Figure S1.
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Figure S3: As Figure 3 in the main text, except the interspecific competition coefficients are uniformly
sampled from [−1, 0].



Intra- and interspecific competition The American Naturalist (2016), 188(1):E1-E12 Page 51

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

−1.00

−0.75

−0.50

−0.25

0.00

Diagonal Position

E
le

m
en

t V
al

ue

Minimized α1
●●

●●●

●●●●●●●●●●
●●●●●

●●●
●
●●●

●●●●●
●●●●●●●●●●●●●●●

●●

●

−1.00

−0.75

−0.50

−0.25

0.00

Diagonal Position

E
le

m
en

t V
al

ue

Maximized α1

0.0

2.5

5.0

7.5

M
inim

um
 β

1

0.3 0.6 0.9 1.2 1.5

●

●●●●●
●●●●●

●
●●

●
●
●
●

●●

●●
●
●
●

●

●●●●●●●●
●●●●

●
●

●
●●

●

●●●

●●
●−1.00

−0.75

−0.50

−0.25

0.00

Diagonal Position

E
le

m
en

t V
al

ue

Minimized α1
●●

●

●●●●

●●●

●

●
●●

●
●●●●●

●●●●●●

●●

●
●●

●

●●
●●

●
●●

●●
●●●●●●

●●

●

−1.00

−0.75

−0.50

−0.25

0.00

Diagonal Position
E

le
m

en
t V

al
ue

Maximized α1

0.0

2.5

5.0

7.5

R
andom

3.0 3.3 3.6 3.9 4.2 4.5

D
en

si
ty

●
●
●
●●●●

●●●●
●●●

●●

●●
●
●●

●

●
●●

●●

●●●●●●●●●●
●●●

●●
●
●
●●●●●●

−1.00

−0.75

−0.50

−0.25

0.00

Diagonal Position

E
le

m
en

t V
al

ue

Minimized α1
●
●●

●●

●●●●●
●●●

●
●
●
●
●
●

●●●

●●
●●●

●●●●●●●●
●●●

●●
●●

●●●●●●●

●

−1.00

−0.75

−0.50

−0.25

0.00

Diagonal Position

E
le

m
en

t V
al

ue

Maximized α1

0

5

10

15

M
axim

um
 β

1

13.3 13.6 13.9 14.2 14.5 14.8
α1

Figure S4: Distributions of the rightmost eigenvalue α1 of A = B+C (B contains only interspecific, C only
intraspecific effects) in a 50-species community, when the rightmost eigenvalue β1 of B is minimized (top),
corresponds to a random matrix (middle), or maximized (bottom). The histogram in each row is generated by
100,000 random permutations of C’s diagonal coefficients. Species in the insets are ordered as in Figure S1.
In each of the three cases, we also looked for the particular arrangement which minimizes/maximizes α1,
using a genetic optimization algorithm (left/right insets showing the magnitudes of C’s diagonal entries in
order; their corresponding values of α1 are marked by the arrows). Interspecific competition coefficients are
uniformly sampled from [−1, 0], and the intraspecific coefficients are also uniformly sampled from [−1, 0].
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Figure S5: Distributions of the rightmost eigenvalue β1 of B in a 50-species community. The histogram
is generated by 100,000 random permutations of B’s coefficients. The black arrows indicate the rightmost
eigenvalues of the most stabilized, random, and least stabilized configurations, respectively (as in Figure S1).
The first and last of which were found using a genetic optimization algorithm. The most stabilized matrix has
been sorted according to the eigenvector associated with the left-most eigenvalue; the other two are sorted by
the eigenvector associated with the right-most eigenvalue. Interspecific competition coefficients are uniformly
sampled from [−1, 0].



Intra- and interspecific competition The American Naturalist (2016), 188(1):E1-E12 Page 53

Minimum β1 Random Maximum β1

010203040 010203040 010203040

−
30

−
20

−
10

0
10

20
β

count

● ●●●

●●

●●●●● ●
●●

●●
●●● ●● ●

●●●● ●● ● ●● ●●● ● ● ●● ● ●● ●●
●● ●●

● ● ●

●●●●
●●

●●
●●

●●
●●

●● ●●●● ●

● ●● ●● ● ●●●

● ●●●●

● ●●●●●●●●
●●●

●●
●

● ● ● ●●● ●●●●

● ●● ● ●

●● ●●● ●● ●●● ●● ●● ●●● ●●● ●● ●● ●

● ● ●●● ● ● ●

● ●

●●● ● ●● ●● ●●● ●● ● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●●● ●

● ●

● ●
● ● ●

● ● ●
● ● ● ●

● ●
● ●

● ● ● ●
● ●

● ●
● ●●●

●●
●●

●●

●●
●●●●●●

●●
●●

●●
●●

●●
●●

●●●●●
●●

●●
●●

●●
●●

●●●
●●●

● ● ● ●
● ●

● ● ●

● ● ● ● ● ● ● ●
● ●

● ●
● ●

● ●

−
10−
8

−
6

−
4

−
10−
8

−
6

−
4

−
10−
8

−
6

−
4

−
10−
8

−
6

−
4

−
10−
8

−
6

−
4

−
10−
8

−
6

−
4

0
17

33
50

D
ia

go
na

l P
os

iti
on

Element Value

0.
0

2.
5

5.
0

7.
5

0.
0

2.
5

5.
0

7.
5

0.
0

2.
5

5.
0

7.
5

0.
0

2.
5

5.
0

7.
5

0.
0

2.
5

5.
0

7.
5

0.
0

2.
5

5.
0

7.
5

Max. α1 Min. α1 Max.  α1 Min.  α1 Max.   α1 Min.   α1

−
40

−
20

0
α

count

Fi
gu

re
S6

:A
s

Fi
gu

re
1

in
th

e
m

ai
n

te
xt

,e
xc

ep
tt

he
in

te
rs

pe
ci

fic
co

m
pe

tit
io

n
co

ef
fic

ie
nt

s
ar

e
sa

m
pl

ed
fr

om
a

be
ta

di
st

rib
ut

io
n

w
ith

pa
ra

m
et

er
s
(1
/2

,
1/

2)
,

an
d

th
e

in
tr

as
pe

ci
fic

co
ef

fic
ie

nt
s

ar
e

un
if

or
m

ly
sa

m
pl

ed
fr

om
[−

10
,−

3]
.



Intra- and interspecific competition The American Naturalist (2016), 188(1):E1-E12 Page 54

Figure S7: As Figure 2 in the main text, except with the three interspecific interaction matrices in Figure S6.
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Figure S8: As Figure 3 in the main text, except the interspecific competition coefficients are sampled from a
beta distribution with parameters (1/2, 1/2).
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Figure S9: As Figure S4, except with interspecific competition coefficients are uniformly sampled from
[−1, 0], and the intraspecific coefficients are also uniformly sampled from [−1, 0].
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Figure S10: As Figure S5, except with interspecific competition coefficients are uniformly sampled from
[−1, 0].
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Figure S12: As Figure 2 in the main text, except with the three interspecific interaction matrices in Figure S11.
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Figure S13: As Figure 3 in the main text, except the interspecific competition coefficients are sampled from
a half-normal distribution with σ = 1.
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Figure S14: As Figure S4, except with interspecific competition coefficients are uniformly sampled from
[−1, 0], and the intraspecific coefficients are also uniformly sampled from [−1, 0].
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Figure S15: As Figure S5, except the interspecific competition coefficients are sampled from a half-normal
distribution with σ = 1, and the intraspecific coefficients are sampled from a half-normal distribution with
σ = 20.
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Figure S17: As Figure 2 in the main text, except with the three interspecific interaction matrices in Figure S16.



Intra- and interspecific competition The American Naturalist (2016), 188(1):E1-E12 Page 65

0.0

0.2

0.4

−50−40−30−20−10
Strength of Intraspecific Competition

S
Ξ

Maximum β1

Random

Minimum β1

Figure S18: As Figure 3 in the main text, except the interspecific competition coefficients are sampled from
a lognormal distribution with parameters µ = 0, σ = 0.5.
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Figure S19: As Figure S4, except the interspecific competition coefficients are sampled from a lognormal
distribution with parameters µ = 0, σ = 0.5, and the intraspecific coefficients are sampled from a lognormal
distribution with parameters µ = 2.5, σ = 0.5.
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Figure S20: As Figure S5, except the interspecific competition coefficients are sampled from a lognormal
distribution with parameters µ = 0, σ = 0.5.


