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Abstract

The influence of seasonal environmental variation on species coexistence is an ecologically
important factor. Its two aspects are how seasonal variation contributes to coexistence mecha-
nisms, and, given a seasonally varying coexistence pattern, how sensitive that coexistence is
to nonstationary external influences (such as climate change). Here we develop a formula for
calculating the robustness of discrete-time periodic dynamics. Robustness is defined as the
sensitivity of the position of the cycle in phase space to varying model parameters. Though
the results are different, the main biological conclusions are in line with those from a similar
study concerning continuous-time cycles (Barabás et al. 2012a): species segregation in the
timing of resource use or predator avoidance increases community robustness in a way that is
analogous to the effects of resource partitioning. We also connect this formalism with the widely
used and successful framework of Peter Chesson (1994), demonstrating that the merging of
these two perspectives yields simplified expressions for robustness more amenable to analytical
treatment. As an example, we apply our results to a two-cycle in a model of two competing
annual plants with seed banks, using our formulas to calculate the range of parameters that
allow for the coexistence of the competitors. This helps us understand which components
of the environmental variation the coexistence is sensitive to; in our case, the model is fairly
robust against changing seed survival, moderately so against changing the variance in seed
germination, and quite sensitive to changing the mean seed germination rates.

Keywords: coexistence; cycle; fluctuations; limiting similarity

1 The importance of robustness analysis for the coexistence problem

There are three standard criteria for a given set of species to be considered coexisting in model
communities. First, the system should eventually settle down to some stationary behavior, be it a
fixed point, a limit cycle, or something more exotic such as a chaotic orbit. We may collectively
refer to such stationary states as “equilibria”. Second, these equilibria must lie in the positive region
of phase space: as negative population densities are impossible, such a solution would mean the
inevitable extinction of at least some of the species. Third, since nature is a noisy place, one cannot
expect the system to be right at the equilibrium at all or even most of the time. Therefore, not only
does there need to be an all-positive equilibrium: it also needs to be attracting.
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Recently, there has been a growing appreciation of the fact that fulfilling these three criteria is not
enough (Meszéna et al. 2006, Szilágyi and Meszéna 2009, Gross et al. 2009, Cordoleani et al. 2011,
Barabás et al. 2012a,b, Adamson and Morozov 2012, Barabás et al. 2013). We live in a noisy world
– not just in terms of dynamical variables (the population densities), but also for the environmental
parameters influencing population growth. Since these density-independent parameters inevitably
fluctuate, coexistence that is confined to an extremely narrow region in parameter space is not to
be taken seriously. Imagine standard Lotka–Volterra competition between two species with equal
intrinsic growth rates and carrying capacities, and with interspecific competition coefficients equal to
0.99. Technically speaking, we have stable coexistence. However, if an external influence increased
the interspecific competition coefficients above 1 or changed the ratio of the carrying capacities by
more than one percent, the stable equilibrium will be destabilized and coexistence lost. This points
to the fact that yet another criterion needs to be fulfilled if we want to consider a coexistence analysis
complete: existence, positivity, and stability of the equilibrium has to hold for a range of parameter
values, not just for special combinations of them. The volume in parameter space allowing for stable
coexistence is what is referred to as the robustness of the system (Meszéna et al. 2006).

In practice, the way robustness is often determined is not by explicitly calculating the volume
of parameter space in which stable coexistence happens, but by determining the sensitivity of the
position of the equilibrium with respect to parameter changes (Meszéna et al. 2006, Szilágyi and
Meszéna 2009, 2010, Barabás et al. 2012a). If the equilibrium hardly moves even after substantial
changes in parameters, coexistence is robust. If, on the other hand, even tiny changes in parameters
lead to sudden shifts of the equilibrium, it will not be able to remain all-positive for long. Robustness
is then lost.

Positivity, stability, and robustness are related but separate properties. Indeed, it is possible to
have stable equilibria that are not all-positive, or all-positive equilibria that are not stable, or unstable
equilibria whose position is relatively insensitive to parameter changes. Of course, the lack of any of
these ingredients will make coexistence impossible – i.e., lack of robustness (or lack of positivity or
stability) is sufficient for the breakdown of coexistence. One important thing to bear in mind though
is that a system that is either stable or unstable must necessarily possess some degree of robustness
in the mathematical sense – after all, we can always imagine a perturbation so small that stability is
uninfluenced (in our Lotka–Volterra example, the system still remains stable if the change in the
competition coefficient is less than 0.01). Needless to say, the system could in principle be so close
to the boundary of stability and instability that, from a biological perspective, the system is as good
as completely unrobust. The point is that positivity, stability, and robustness of an equilibrium all
have to be checked independently to solve the coexistence problem.

This article develops a general robustness analysis of discrete-time limit cycles of fixed period
length. We deal with robustness exclusively: existence, stability, and positivity of the cycle are
therefore all assumed. First, in section 2, we discuss some preliminaries on the robustness of fixed
points, its connection to deeper concepts in ecology such as the ecological niche, and the extension
of these results to continuous-time limit cycles (Barabás et al. 2012a). Next, we derive the robustness
formulas for discrete-time cycles in section 3. We then go on in section 4 to present a general
approximation scheme, based on the celebrated framework of Peter Chesson (1994), which allows
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for simplified robustness calculations. Finally, we apply our results in section 5 to a two-cycle in a
model of annual plant competition with seed banks.

2 Preliminaries

2.1 Robustness of fixed points

When dealing with fixed points, the robustness formulas do not depend on whether the dynamical
equations are formulated in discrete or continuous time. As the continuous-time case has often been
emphasized before (Meszéna et al. 2006, Szilágyi and Meszéna 2009, 2010, Barabás et al. 2012a),
here we focus on the discrete-time formulation. The general set of model equations describing the
dynamics of the community can be written as

xi(t +1) = xi(t)+ ri(R(x1(t), . . . ,xL(t)),E, t) (i = 1, . . . ,L), (1)

where xi is the log-density and ri is the log of the geometric rate of growth of species i, L is the total
number of species in the system, E is the collection of all density-independent (external) parameters,
and R is the vector function of all density-dependent quantities, which we will call regulating factors
(Levin 1970, Case 2000, p. 146, Krebs 2001, p. 288, Meszéna et al. 2006). By definition, the
regulating factors mediate all interactions within the community; artificially keeping R constant
would lead to the independent exponential growth or decline of all the species. Regulating factors
can be many and varied: they may include resources, predators, pathogens, refuge availability, or
any other thing which is involved in the feedback loop between population density and growth rate.

Assuming that the dynamics possesses a fixed point with log-densities x∗i , the

ri(R(x∗1, . . . ,x
∗
L),E) = 0 (2)

equilibrium conditions will hold. These are L algebraic equations for the equilibrium log-densities
x∗i . What we are interested in is how much the position of this fixed point is expected to shift
after perturbing the external parameters E. Since the equilibrium densities are functions of E,
differentiating Eq. (2) with respect to the parameters yields

∂ ri

∂E
+

L

∑
j=1

∂ ri

∂x j

dx∗j
dE

= 0. (3)

Rearranging this equation yields the responses of the equilibrium densities to perturbations of E:

dx∗i
dE

=−
L

∑
j=1

(
∂ ri

∂x j

)−1
∂ r j

∂E
, (4)

where matrix, not element-by-element, inversion is performed. Notice that the inverted matrix
is the classical community matrix, giving the competition coefficients in a Lotka–Volterra model
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(with some scaling involved due to the fact that we differentiate with respect to the log-densities).
The fundamental observation is that, since the inverse of a matrix is proportional to the inverse
of its determinant, the closer the determinant of the inverted matrix is to zero, the less robust the
system will be. Therefore, a necessary condition for robust coexistence is for the matrix to have a
determinant that is safely bounded away from zero, so that fluctuations in the parameters do not
cause the collapse of the system.

We would also like to emphasize the generality of our approach. Recently, it has been stressed
that model robustness should be checked not just against parameter perturbations, but also against
changes in the functional forms of the model’s ingredient functions (Gross et al. 2009, Cordoleani
et al. 2011, Adamson and Morozov 2012, Barabás et al. 2012b, 2013). An example of such a
structural perturbation would be changing the functional response curve of a predator from a
Michaelis-Menten (Holling 1959) to an exponential (Ivlev 1961) function (which look very similar
to the naked eye). We emphasize that, as long as a family of functions can be parametrized in a
smooth manner (and this assumption is already there e.g. in the work of Cordoleani et al. 2011 and
Adamson and Morozov 2012), there is nothing to stop one from assigning that parameter to be part
of E and analyzing the robustness of the model with respect to it, using Eq. (4). Or, to go even
further: Eq. (4) remains formally valid even if E contains functions and not just numbers – the only
thing to modify is to replace differentiation with respect to E by functional differentiation. Note that
this extension to infinitely many parameters comes at a price though: since the concept of a volume
is not well defined in function spaces, one can no longer talk about the set of parameters supporting
coexistence being “large” or “small”. We therefore lose the intuitive notion of the “volume in
parameter space allowing for coexistence” when E is a continuum of parameters.

2.2 Ecological implications

Eq. (4) can be made more useful and biologically interpretable by further expanding the partial
derivative of ri with respect to x j via the chain rule:

dx∗i
dE

=−
L

∑
j=1

(
∂ ri

∂R
∂R
∂x j

)−1
∂ r j

∂E
, (5)

where it is understood that all discrete (continuous) indices of the vector R are summed (integrated)
over. The derivative ∂ ri/∂R is the response of the ith growth rate to a change in the regulating
factors. It is also referred to as the sensitivity niche vector of species i. Similarly, ∂R/∂x j, the
change in regulation due to an increase in the abundance of the jth species, is called the impact niche
vector of species j (Meszéna et al. 2006). Our notation will be Si and I j for these two quantities,
respectively. Since the indices of R are summed/integrated over, the inverted matrix can be thought
of as the overlap of Si and I j.

Let us assume for the moment that the number of regulating factors is actually equal to the
number of species in the system, L. In that case, indexing the regulating factors with the symbol m,
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we have Si = Sim and I j = Im j, which are now both square matrices, and

∂ ri

∂x j
=

L

∑
m=1

SimIm j. (6)

Since for any two square matrices the determinant of the product is the product of the determinants,
we have

det
(

∂ ri

∂x j

)
= det(Si j)det(Ii j). (7)

The well-known geometrical interpretation of the determinant is that its absolute value measures
the L-dimensional volume spanned by its rows as vectors (or by the columns – it does not matter).
Denoting the volume spanned by the sensitivity vector of each species as VS and the volume spanned
by the impacts as VI, we therefore get ∣∣∣∣det

(
∂ ri

∂x j

)∣∣∣∣= VSVI. (8)

A small but important result, found in Meszéna et al. (2006), is the extension of this formula to cases
where the number of regulating factors is not equal to the number of species, turning the equation
into an inequality, or upper bound: ∣∣∣∣det

(
∂ ri

∂x j

)∣∣∣∣≤ VSVI (9)

(to see this result, consider the two facts that 1) if the number of regulating factors is larger than
L, then only the projection onto a lower-dimensional subspace matters, which will have a smaller
volume than the original; and 2) if the number of regulating factors is less than L, then there must be
some linear dependence between the sensitivities and the impacts, and therefore both the determinant
and the two volumes will be zero).

As discussed before, a small determinant signals that the system is close to being structurally
unstable. The above result shows that small volumes spanned by the sensitivity and the impact
vectors will lead to an even smaller determinant and thus the loss of robustness in the system.
Small volumes result when the vectors are either of short length, or are nearly collinear. The first
happens when regulation is weak; the second when two or more species are regulated in an overly
similar manner. Avoiding such overly similar regulation is therefore a necessary condition for robust
coexistence.

This observation connects back to classical ideas of functional niche segregation (Elton 1927,
Christiansen and Fenchel 1977, Hutchinson 1978, Chesson 2000, Meszéna et al. 2006). To take an
example, if there are two distinct noninteracting resources and two consumers competing for them,
then robust coexistence is impossible if, let us say, both consumers eat one of the resources but not
the other. Indeed, in this case the second component of the sensitivity vector of both species (the one
corresponding to the uneaten resource) is zero, since the growth rates do not depend on that resource
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at all. This forces the two sensitivity vectors to be parallel. The area (or two-dimensional volume)
spanned by two collinear vectors is zero, therefore robustness is lost: only the species with the
lower R∗ for the consumed resource will persist (Tilman 1982). On the other hand, by consuming
both resources and in different proportions from the other consumer, robustness can be ensured and
competitive exclusion avoided.

The classical niche concept thus finds a natural implementation via the modern theory of
community robustness. The Hutchinsonian “niche space” is then identified with the set of all
regulating factors because, as we have seen, these are the variables species have to be different in to
coexist robustly. This is true regardless of whether this space is discrete (e.g., two noninteracting
resources) or continuous (as in the case of a resource gradient). Classically, the niche of a species
within niche space was assumed to be given by a resource utilization function (MacArthur and
Levins 1967, Hutchinson 1978). The overlap of these functions measured the strength of competition
(the derivative ∂ ri/∂x j) between two species. Unfortunately, being a phenomenological construct,
the resource utilization function lacks a mechanistic underpinning which would allow it to be
generalized beyond the confines of the simplest competition models. However, looking at Eq. (5),
we see that the strength of competition, ∂ ri/∂x j, is always necessarily given by the overlap of Si

and I j. Therefore, the resource utilization function needs to be replaced by two functions: the
sensitivity and the impact. Together, they fully characterize the niche of any species within niche
space, and they also inherit the fundamental property ascribed to resource utilization functions: too
much similarity (i.e., overlap) of the sensitivities and/or the impacts makes coexistence unlikely
by rendering it unrobust. And this is not an intuitive, phenomenological statement, but a powerful,
general conclusion that will hold regardless of any model details.

2.3 Robustness of continuous-time limit cycles

The above results for the robustness of fixed points have been extended to continuous-time limit
cycles by Barabás et al. (2012a). The formulas are not really important for us per se, but we
summarize the main conclusions. In brief, it turns out that all results from the fixed point case, in
particular Eq. (9), carry over, provided that we treat each regulating factor at each moment in time
as a separate regulating factor. Putting it another way, time becomes another quantity indexing
the vector of regulating factors. Robust coexistence may therefore be achieved, not just through
resource partitioning or species-specific natural enemies, but by the proper timing of resource use or
predator-avoidance. Moreover, the mathematical structure of time-partitioning is equivalent to that
of resource-partitioning. In this way, the extension of robustness analysis to continuous-time limit
cycles formalizes the concept of temporal niche segregation (Christiansen and Fenchel 1977, Levins
1979, Chesson 1994, 2000, Szilágyi and Meszéna 2010).

3 Robustness of discrete-time limit cycles

Unfortunately, the continuous-time results on limit cycles do not immediately generalize to discrete-
time ones. Mathematically, this is because the derivation of the former rely on the smoothness of the
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flow generated by continuous-time differential equations (see Barabás et al. 2012a, Appendix 1 for
the technical details). As discrete-time systems may jump around in phase space, the derivation has
to be done from scratch. Of course, from a biological perspective, one does not expect there to be
any essential difference between the two cases, so the extension to discrete time looks to be a mere
formality. Still, to be able to actually calculate the robustness of cycles in discrete-time models, one
cannot simply apply the continuous-time formulas; hence the derivation in this section.

Let us start with Eq. (1) as our community model and assume it induces a T -cycle with initial
conditions x∗i = xi(0). We convert this periodic dynamics into an equivalent fixed point dynamics by
recording the state of the system stroboscopically at every time T . The cumulative growth rates r̄i

over one cycle read

r̄i =
T−1

∑
τ=0

ri(τ) = 0, (10)

where ri(τ) = ri(R(x1(τ), . . . ,xL(τ)),E,τ). This induces the fixed-point dynamics

xi(t +T ) = xi(t)+ r̄i, (11)

whose fixed point is the set of initial conditions x∗i . Implicit differentiation of the r̄i = 0 condition
with respect to E leads to

∂ r̄i

∂E
+

L

∑
j=1

∂ r̄i

∂x∗j

dx∗j
dE

= 0, (12)

and rearranging the result yields the analogue of Eq. (4):

dx∗i
dE

=−
L

∑
j=1

(
∂ r̄i

∂x∗j

)−1
∂ r̄ j

∂E
. (13)

To make this formula useful, ∂ r̄i/∂x∗j has to be evaluated. We introduce some simplifying notation:

Φi j(τ) =
∂xi(τ)

∂x∗j
, (14)

and

ai j(τ) =
∂ ri(τ)

∂R(τ)

∂R(τ)

∂x j(τ)
. (15)

In ai j(τ), summation/integration for all discrete/continuous indices of the vector R(τ) is understood,
as before. Note how the two factors of ai j(τ) are like the sensitivity (∂ ri/∂R) and impact (∂R/∂x j)
vectors, evaluated at a given moment τ . To keep the nomenclature straight, we will call the niche
vectors Si(τ), I j(τ) at any given moment the momentary niche vectors, and the collection of all
momentary vectors Si(·), I j(·) the temporal niche vectors. Note that this effectively endows the
vector of regulating factors by an extra index, τ , on top of the original ones.
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We now evaluate the matrix ∂ r̄i/∂x∗j (the matrix whose inverse governs robustness):

∂ r̄i

∂x∗j
=

∂

∂x∗j

T−1

∑
τ=0

ri(τ) =
T−1

∑
τ=0

L

∑
k=1

∂ ri(τ)

∂R(τ)

∂R(τ)

∂xk(τ)

∂xk(τ)

∂x∗j
=

T−1

∑
τ=0

L

∑
k=1

aik(τ)Φk j(τ). (16)

Using this, Φi j(τ) can be written as

Φi j(τ) =
∂xi(τ)

∂x∗j
=

∂

∂x∗j

(
x∗i +

τ−1

∑
t=0

ri(t)

)
= δi j +

τ−1

∑
t=0

L

∑
k=1

aik(t)Φk j(t), (17)

where δi j is the Kronecker symbol, equal to 1 if i = j and to 0 otherwise. From this relationship,

Φi j(τ +1)−Φi j(τ) =
L

∑
k=1

aik(τ)Φk j(τ) (18)

immediately follows. Now Eq. (16) can be simplified:

∂ r̄i

∂x∗j
=

T−1

∑
τ=0

L

∑
k=1

aik(τ)Φk j(τ) =
T−1

∑
τ=0

(
Φi j(τ +1)−Φi j(τ)

)
= Φi j(T )−Φi j(0). (19)

Note that Φi j(0) = δi j from Eq. (14). To make use of this expression, we need to solve for Φi j(T )
explicitly. Switching to matrix notation for better readability, Eq. (17) with τ → T reads

Φ(T ) = 1+
T−1

∑
τ=0

a(τ)Φ(τ), (20)

with Φ(0) = 1. The solution to this recursion equation is conjectured to be

Φ(T ) =
0

∏
τ=T−1

(
1+a(τ)

)
(21)

for all T ≥ 1. Since Φ(0) = 1, for T = 1 Eq. (20) gives Φ(1) = 1+a(0)Φ(0) = 1+a(0), which is
the same as the result from Eq. (21). Therefore, the conjecture holds for T = 1. We now show it
holds for T +1 if it holds for T . Substituting the conjectured solution into Eq. (20), we get

0

∏
τ=T−1

(
1+a(τ)

)
= 1+

T−1

∑
τ=0

a(τ)
0

∏
τ ′=τ−1

(
1+a(τ ′)

)
. (22)

Let us call the terms on either side of the equality sign in Eq. (22) D. For T +1 we have

0

∏
τ=T

(
1+a(τ)

)
= 1+

T

∑
τ=0

a(τ)
0

∏
τ ′=τ−1

(
1+a(τ ′)

)
. (23)
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Factoring out the τ = T terms, we get

(
1+a(T )

) 0

∏
τ=T−1

(
1+a(τ)

)
︸ ︷︷ ︸

D

= a(T )
0

∏
τ=T−1

(
1+a(τ)

)
︸ ︷︷ ︸

D

+1+
T−1

∑
τ=0

a(τ)
0

∏
τ ′=τ−1

(
1+a(τ ′)

)
︸ ︷︷ ︸

D

, (24)

or (
1+a(T )

)
D = a(T )D+D, (25)

the two sides clearly being equal. This proves by induction that Eq. (21) is indeed the solution
giving Φ(T ) for all T ≥ 1. Now Eq. (19) can be written as

∂ r̄i

∂x∗j
=

0

∏
τ=T−1

(
δi j +ai j(τ)

)
−δi j. (26)

This expression is the discrete-time analogue of Eq. (18) in Barabás et al. (2012a); notice that in
the limiting case of infinitely many infinitesimal time steps, this formula becomes identical to the
continuous-time one. The full formula for the robustness of the periodic orbit is then obtained by
substituting this expression into Eq. (13):

dx∗i
dE

=−
L

∑
j=1

(
0

∏
τ=T−1

(
δi j +Si(τ)I j(τ)

)
−δi j

)−1 T−1

∑
t=0

∂ r j(t)
∂E

(27)

(where, again, the inverse refers to inverting the matrix as a whole, not element-by-element inver-
sion).

We now show that linear dependence of the temporal sensitivity vectors Si(·) or the temporal
impact vectors I j(·) leads to the inverted matrix having an eigenvalue of zero. Let us consider
linear dependence in the impact vectors first. Linear dependence means there exists a τ-independent
vector α = (α1, . . . ,αL) such that ∑

L
j=1 α jI j(τ) = 0 for each τ = 0, . . . ,T − 1. Then α is a right

eigenvector of ai j(τ) = Si(τ)I j(τ) for each τ , with eigenvalue 0. If it is the sensitivities that are
linearly dependent, then the same argument leads to α being a left eigenvector of each ai j(τ) with
eigenvalue 0.

If ai j(τ) has an eigenvalue of zero for each τ corresponding to the same eigenvector α , (δi j +
ai j(τ)) will have an eigenvalue of 1 for each τ , and the product of these matrices will also have an
eigenvalue of 1 (because the matrices share the eigendirection α). Then, subtracting off the identity
matrix from this product as in Eq. (26), the expression as a whole has an eigenvalue of zero. Then,
as seen from Eq. (27), the equilibrium densities become infinitely sensitive to perturbations in E: the
system is structurally unstable. Also, since eigenvalues are continuous functions of matrix elements,
near-linear dependence of sensitivities or impacts will result in ∂ r̄i/∂x∗j having an eigenvalue that is
nearly zero, which means the system is nearly structurally unstable, i.e., it lacks sufficient robustness.

Linear dependence of the sensitivities and impacts of course means that the volume they span is
zero. Similarly, near-linear dependence means the volume they span is small. Thus, we come around
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full circle: robustness is still measured by the volumes spanned by the niche vectors – the temporal
niche vectors, that is. Robustness increases with the species having more different sensitivity
and/or impact vectors at corresponding points within the T -cycle, i.e., by having species-specific
responses to the environment. Just as in the continuous-time case, this can be viewed as segregation
with respect to time as a resource axis (now with only finitely many elements), or temporal niche
segregation for short (Christiansen and Fenchel 1977, Levins 1979, Chesson 1994, 2000, Barabás
et al. 2012a). The basic conclusions of the earlier framework therefore still hold: robustness of a
periodically fluctuating community is like that of an equilibrium community, provided that we list
all regulating factors at different points in the cycle as separate factors.

4 A method for the analytical estimation of the sensitivity vectors

In general, the temporal sensitivities Si(·) and impacts I j(·) will depend both on model parameters
and on population densities at various moments within the cycle. Moreover, especially in the
case of the sensitivities, this dependence may be more intricate and difficult to interpret than in
continuous-time models. The reason is that to handle the discrete-time case, we had to employ a
log-transformation of the geometric growth rates. Therefore, when taking the derivatives of these
log-growth rates to obtain the sensitivities, the result is multiplied by the reciprocal of the original
geometric rates. This artifact has no analogue in continuous time.

The difficulty here is that, in order to evaluate these quantities, the densities at various points in
the cycle will need to be known. These might be possible to estimate from e.g. field data, but when
analyzing theoretical models, we usually would like to say something general about the behavior of
the model without actually having to solve it first.

One possible way of doing this is to connect our robustness analysis with the general framework
of Chesson (1994) for multispecies competition in variable environments. In that framework
we start out from Eq. (1) and take the growth rates ri to be functions of density-independent
(environmental) parameters Ei and density-dependent (competitive) factors Ci, so ri = ri(Ei,Ci). We
define “equilibrium” values for the environmental and competitive parameters, E∗i and C∗i , such that
ri(E∗i ,C

∗
i ) = 0. They are usually not unique, but fixing one will fix the other (also, there are often

natural, biologically motivated choices for their values). Next, the ri are approximated. Since the
growth rates are allowed to fluctuate (if Ei and Ci depend on time), a linear approximation will not
suffice. Instead, Chesson tells us to perform a quadratic expansion:

ri ≈ αi(Ei−E∗i )−βi(Ci−C∗i )+ζi(Ei−E∗i )(Ci−C∗i ), (28)

where αi = ∂ ri/∂Ei, βi = −∂ ri/∂Ci, ζi = ∂ 2ri/(∂Ei∂Ci), all evaluated at Ei = E∗i , Ci = C∗i . The
(Ei−E∗i )

2 and (Ci−C∗i )
2 terms are not included, because it turns out that, after averaging the growth

rates over time, these terms are both small with the assumptions of Chesson (1994) and so can be
neglected. To bring this approximation to an even simpler form, Chesson defines Ei = αi(Ei−E∗i ),
Ci = βi(Ci−C∗i ), and γi =−ζi/(αiβi) to get

ri(t)≈ Ei(t)−Ci(t)+ γiEi(t)Ci(t). (29)
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This model is generally much simpler than the original one while still retaining much of its interesting
nonlinearity.

Now consider an arbitrary model with a periodic T -cycle solution and write it in the above form.
The total growth over one cycle is

T−1

∑
t=0

ri(t)≈
T−1

∑
t=0

Ei(t)−
T−1

∑
t=0

Ci(t)+ γi

T−1

∑
t=0

Ei(t)Ci(t) = 0. (30)

By definition, the competitive factors Ci(t) are affected by the population densities, while the
environmental parameters Ei(t) are not. Therefore, nothing prevents us from choosing the Ci(t)s
as the (time-dependent) regulating variables. Then the sensitivities can be calculated using this
approximation:

Si(t) = Sik(t) =
∂ ri(t)
∂Ck(t)

= δik (γiEi(t)−1) , (31)

while the impacts will depend on the particular form of the Ci(t) and their dependence on the
log-densities:

I j(t) = Ik j(t) =
∂Ck(t)
∂x j(t)

. (32)

Alternatively, there is no reason one could not choose the Ci(t) instead of the Ci(t) as the regulating
factors. Then, since by definition Ci(t) = βi(Ci(t)−C∗i ), it follows that dCi(t) = βidCi(t), and so
the sensitivities will read

Si(t) = Sik(t) =
∂ ri(t)
∂Ck(t)

= δikβk (γiEi(t)−1) . (33)

The impacts will then correspondingly obtain a factor of β
−1
k , as they should.

This derivation did not depend on whether we have a continuous or discrete time model. In
continuous time, the sums are replaced by integrals in Eq. (30) and the partial derivative by a
functional derivative in the sensitivities, but the final forms of the sensitivities and impacts will be
unchanged.

How does this help? Notice that the sensitivities derived from the approximated model have a
very important feature: they do not depend on the Ci(t) and so are composed entirely of density-
independent parameters. One can therefore evaluate them without having to solve the model.
This makes them much more amenable to analytical treatment than the original, unapproximated
sensitivities.

Of course, the robustness of the system is not determined by the sensitivities alone – the
impacts are also needed. Unfortunately, there does not seem to exist an analogous scheme for
approximating the impacts in a density-independent way. However, having a simpler formula just
for the sensitivities is already a good crutch. First, regardless of the impacts, if the volume spanned
by the temporal sensitivity vectors shrinks to zero, then robustness is lost – this can be used to
estimate where in parameter space a critical transition, such as an extinction event, is expected to
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happen. Second, it will usually be possible to give an upper bound for the impacts, and using this
upper bound alongside the approximate sensitivities, the robustness of the system may be estimated
even at points where the sensitivity volume is nonzero. Third, the approximated sensitivities may
inform us about trends in the response of robustness to varying the parameters: by changing a given
parameter in a given direction, we can see whether robustness is expected to increase or decrease.

In summary, the merging of our temporal robustness analysis with the framework of Peter
Chesson (1994) offers a potentially useful approximation which allows for the analytical treatment
of temporal robustness calculations.

5 Application: the seedbank model

Let us apply our framework to the two-species seedbank model (Ellner 1984, Chesson 1990, 1994,
Levine and Rees 2004). In this model the two species compete for a common limiting resource
(which we can assume to be space) in a variable environment, which in our model will alternate
between “good” and “bad” years. The governing equations read

Ni(t +1) = Ni(t)
(

si(1−Ei(t))+
YiEi(t)

E1(t)N1(t)+E2(t)N2(t)

)
, (34)

where Ni(t) is the density of seeds of species i in the soil seed bank at time t, Ei(t) is the fraction of
seeds of species i germinating between time t and t +1, si is the rate of survival of those seeds that
do not germinate, and Yi is the maximum number of germinating seeds when the species experience
one “unit” of competition (to see this, we set both the Ei and the denominator in the above expression
to one).

One possible choice for the regulating factors is the single variable E1(t)N1(t)+E2(t)N2(t),
though for reasons to become apparent soon, we take instead the logarithm of this quantity to be our
regulating factor: R(t) = log(E1(t)N1(t)+E2(t)N2(t)). The growth rates of the model then read

ri(t) = log
(

si(1−Ei(t))+
YiEi(t)

exp(R(t))

)
. (35)

This choice for R(t) immediately reveals an important property of the system: if the environment is
constant and the densities settle down to a fixed point equilibrium, coexistence is impossible. This
is because in that case there is a single regulating factor R = log(E1N1 +E2N2) for both species,
and so the sensitivities and the impacts are confined to a one-dimensional space. Since two vectors
on the same line necessarily span an area (i.e., 2D volume) of zero, by Eq. (9) the robustness of
the system is lost. The conclusion is that fluctuations are strictly necessary for the two species to
coexist, a known result for this model (Chesson 1994).

We shall assume that the Ei(t) oscillate between “good” and “bad” years and rely on these
fluctuations to generate coexistence that would otherwise be impossible in a constant world. What
counts as a good year for species 1 will be considered a bad year for species 2, and vice versa. Let
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P(t) be a parity function, equal to -1 if t is odd and to 1 if t is even. Then our choices for the Ei(t)
are

E1(t) = ε10 (1− ε1aP(t)) (36)

and
E2(t) = ε20 (1+ ε2aP(t)) , (37)

where εi0 and εia are the mean and the amplitude of the oscillations (their values have to be chosen so
that Ei(t) is confined between 0 and 1 for all t). These functions – predictably – induce a stationary
two-cycle in the system.

To obtain the robustness of the stationary cycle against parameter perturbations, we first choose
numerical values for all eight model parameters (Table 1). Next, we obtain the stationary two-cycle
of the system by iterating the model twice and solving for the densities. The resulting algebraic
equations yield N1(0) = 0.56, N2(0) = 0.9 for the initial, and N1(1) = 0.41, N2(1) = 0.95 for the
final point in the two-cycle. Finally, we calculate the linear responses of these equilibrium densities
to perturbations of each model parameter using Eq. (27); the results are shown in Table 1.

Parameter (E) Value of E
dN1(0)

dE
dN2(0)

dE
dN1(1)

dE
dN2(1)

dE
ε10 0.5 4.13 −5.31 3.93 −3.72
ε20 0.5 −4.94 4.97 −4.35 2.97
ε1a 0.2 −1.33 1.55 −1.42 1.51
ε2a 0.2 4.26 −4.43 3.27 −3.15
s1 0.5 2.50 −2.73 2.51 −1.74
s2 0.6 −1.89 3.12 −1.80 1.97
Y1 1 3.47 −3.46 3.09 −2.29
Y2 1 −2.90 4.36 −2.68 3.24

Table 1: The parameters of the two-species seedbank model (column 1), their numerical values (column 2),
and the sensitivities of the species’ densities to each parameter at both points within the two-cycle, calculated
from Eq. (27) (last four columns). Since Ni = log(xi), we have converted back to the linear scale by using
dxi/dE= (1/Ni)(dNi/dE). The sensitivity values are to be thought of as multipliers: if the parameter gets
perturbed away from its original value by a small ∆E, the population density of species i at time t within the
cycle will be modified by ∆Ni(t) = (dNi(t)/dE)∆E.

From these values it is possible to estimate the amount of parameter change that would cause
the extinction of at least one of the species. Of course, this is based on our local approximation;
when extrapolating the effects for non-infinitesimal parameter perturbations, this might not give
very accurate results. To explore the accuracy of our predictions, we compared them to explicit
simulation results, where we numerically solved the model for a wide range of parameter values,
recording those where one of the species went extinct (the extinction threshold was Nex = e−10). A
graphical depiction of the parameter ranges that support coexistence can be seen on Figure 1. On this
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plot, we shaded the domain for each parameter in which both populations oscillate with all-positive
densities. The gray shading represents the “true” coexistence range, obtained via simulations, while
the white shading is the estimated coexistence range based on Eq. (27). Outside the gray-shaded
regions, at least one species will have gone extinct. Note that we vary one parameter at a time, not
multiple ones simultaneously.

¶10

¶20

¶1 a

¶2 a

s1

s2

Y1

Y2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 1: The range of each parameter allowing for the coexistence of the two competitors in the seedbank
model. Since the parameters all have comparable magnitudes, they have been put on the same scale. The
gray bars represent the “true” ranges, obtained via simulation, while the white bars are obtained by applying
Eq. (27) and extrapolating the effects of this linear approximation to see where extinction is predicted to
happen. Note the strong correspondence between the simulated and calculated results.

Based on the correspondence between the gray and white regions, the approximation of Eq. (27)
clearly does a very good job of predicting where coexistence can happen. It does, however, seem
to yield conservative estimates, slightly underestimating the endpoints of the coexistence-yielding
parameter range in all cases except for the lower bound on ε2a. As the local approximation measures
the slope of the cycle’s position in phase space as a function of the parameters, the implication
is that this function must have been concave-down for every parameter except ε2a. One possible
way to explore the curvature of this function would be to consider the second-order perturbations
– i.e., the derivative d2x∗i /dE2. The sign of this second derivative will inform us about the local
convexity of the function, and so will give information about whether and how much the linear
approximation is expected to under- or overestimate the true parameter range where coexistence
can happen. Developing the quadratic perturbation formula is, however, beyond the scope of this
article; for now, we will have to be content with the (already good) approximation our linear formula
provides.
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One may easily calculate the sensitivity and impact vectors for this model. The sensitivities read

Si(t) =
∂ ri(t)
∂R(t)

=
Yi

si (E1(t)N1(t)+E2(t)N2(t))(1−1/Ei(t))−Yi
, (38)

and the impacts are, remembering that xi = log(Ni),

I j(t) =
∂R(t)
∂x j(t)

=
∂R(t)
∂N j(t)

N j(t) =
E j(t)N j(t)

E1(t)N1(t)+E2(t)N2(t)
. (39)

Notice that the impact vectors are bounded from above: the magnitude of each component cannot
exceed one. Therefore, the volume these vectors can span also has an upper bound. That is why
we chose to put the regulating factor on the log scale: without this, the form of the impacts would
have been simpler, but they would not have been bounded. This means that whenever the volume
spanned by the sensitivities is small, the system is guaranteed to be unrobust: it is impossible for the
impact volume to offset the effect of a small sensitivity volume, as it cannot grow larger than some
specific value (in this case, one).

One final thing to do is to see how well the approximation scheme of the previous section for
the sensitivity vectors works in practice. First we calculate the analytical approximation to the
sensitivities. We choose C(t) = R(t) for the competitive factor. A natural choice for C∗ is C∗ = 0;
substituting this into Eq. (35) with R(t)→ C∗ and requiring the growth rates to be zero yields
E∗i = (1− si)/(Yi− si). We use the definitions for αi, βi, γi, and Ei(t) given in the previous section
to obtain

αi =
∂ ri(t)
∂Ei(t)

∣∣∣∣
E∗i ,C∗

= Yi− si, (40)

βi =−
∂ ri(t)
∂C(t)

∣∣∣∣
E∗i ,C∗

= Yi
1− si

Yi− si
, (41)

γi =−
1

αiβi

∂ 2ri(t)
∂Ei(t)∂C(t)

∣∣∣∣
E∗i ,C∗

=
si

1− si
, (42)

Ei(t) = αi (Ei(t)−E∗i ) = (Yi− si)

(
Ei(t)−

1− si

Yi− si

)
. (43)

The approximated sensitivity vectors then read, from Eq. (33), as

Si(t) = βi (γiEi(t)−1) = siYiEi(t)−Yi
1− s2

i

Yi− si
. (44)

Figure 2 compares the volumes spanned by the true and the approximated sensitivity vectors as
functions of the parameters. To obtain the true sensitivities given by Eq. (38), the model has to
be simulated numerically for the stationary densities (the main advantage of the approximation is
precisely that it obviates the need for this step). The volumes are calculated as the absolute value of
the determinant of the 2×2 matrix obtained by stacking the sensitivity vectors of the two species on
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top of one another in two rows. On each plot, the abscissa represents about one third of the total
range of one of the parameters, while the ordinate measures the volume spanned by the sensitivity
vectors. The solid lines are the volumes spanned by the true sensitivity vectors, the dashed lines are
the volumes spanned by the approximated ones from Eq. (44). We see that the approximation is fair
for a reasonably wide range of all the parameters.
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Figure 2: Volumes spanned by the temporal sensitivity vectors of the two species as a function of the
parameters. The volumes are calculated as the absolute value of the determinant of the 2×2 matrix obtained
by stacking the sensitivity vectors of the two species on top of one another in two rows. On each plot a
different parameter is varied in a ±0.25 range of its original value (Table 1, column 1). The solid lines are the
actual sensitivity volumes obtained via simulation; the dashed lines are the approximated sensitivities from
Eq. (44).

6 Discussion

In this article we have developed the machinery to evaluate the robustness of discrete-time limit
cycles to parameter perturbations. The result, in line with earlier findings (Barabás et al. 2012a), is
that every regulating factor at each point in time within the cycle is effectively a separate regulating
factor, independent utilization of which will enhance the robustness of the system. Each species’
sensitivity and impact vectors have to be considered at every point in time within the T -cycle; small
volumes spanned by these vectors will lead to unrobust coexistence that cannot be expected to hold
over an appreciable range of parameter space. These volumes will always be small if the vectors
are nearly collinear – therefore, sufficient segregation of the niche vectors is a necessary condition
for coexistence. We also developed, based on the formalism of Chesson (1994), an approximation
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scheme that allows for the analytical treatment of the sensitivity vectors. Finally, we demonstrated
how our machinery works by applying it to the two-species seedbank model.

Just how much segregation of the niche vectors (sensitivities and impacts) is “sufficient” for
robust coexistence will depend on the specific model and the probability distribution of the environ-
mental parameters. In principle, coexistence can be ensured even with a very narrow coexistence
bandwidth if one is able to restrict the parameters to that region, for instance in controlled laboratory
experiments. The actual model a community obeys, as well as the statistical properties of the
environment, are empirical properties that need to be assessed before determining how much niche
segregation is needed to confer sufficient robustness to the system. These system-specific questions
notwithstanding, no community will be able to sustain itself with zero robustness, therefore in
nature some level of segregation in both the sensitivities and the impacts is strictly necessary for
coexistence. A lack of such segregation is of course possible, but then the co-occurrence (Leibold
and McPeek 2006) of the species will not be stable – instead, it might be sustained by source-sink
dynamics, or one of the species might be on its way to extinction. Robustness analysis does not say
anything about the speed with which exclusion happens; in principle, such processes could take a
long time.

Species’ relationships to the regulating factors dictate community robustness, but there is no
unambiguous way of picking the regulating variables. For instance, in our seedbank model, we could
have chosen the two population densities as regulating factors (this would have made the impact
vectors trivial: Im j = δm j), or the two growth rates themselves (which makes the sensitivities trivial:
Sim = δim). Needless to say, we could have chosen any function of the weighted sum of densities as
well, not just their logarithm – the number of choices is infinite. Importantly however, robustness
itself is invariant to the choice of regulating factors: as is seen from Eq. (5), the matrix whose
inverse determines robustness does not ultimately depend on this choice. Whatever differences there
would be in the sensitivities due to choosing the regulating factors in a certain way, they will be
compensated by corresponding differences in the impacts. Therefore, choosing the set of regulating
factors is as much an art as a science: one should strive to make a choice that makes the niche
vectors as simple and as biologically informative as possible. In the seedbank model for instance,
the fact that there is a single regulating factor immediately reveals that coexistence is impossible –
unless fluctuations increase this number. Since in the fluctuating framework every regulating factor
at every moment in time counts as a different factor, the two-cycle increases the number of factors
to two. Two-species coexistence therefore becomes possible, but not the coexistence of three or
more species. Also, by making the seemingly arbitrary decision of putting the regulating factors on
the log scale, it turned out that the impact volumes become bounded this way, making the volumes
spanned by the sensitivities (which can be analytically approximated) more meaningful.

The present state of the theory of community robustness is rather incomplete. On the practical
side, applications to real-world communities and data will be necessary to assess just how useful the
theory is in practice. On the theoretical side, here is how we stand. Fixed-point robustness analysis
of unstructured populations is available (Meszéna et al. 2006, summarized earlier in this article). An
extension to structured populations at fixed points is found in Szilágyi and Meszéna (2009), but the
types of perturbations this framework can analyze is rather restricted, so a generalization of those
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results will be needed. The theory for periodically fluctuating unstructured populations is covered in
Barabás et al. (2012a) and in the present paper. The framework for arbitrary stationary fluctuations
with unstructured populations and (the most complicated case) with structured ones is still lacking.
Working these cases out is the next step in developing the robustness framework further.
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