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Abstract

Temporal environmental variation has long been considered as one of the potential factors
that could promote species coexistence. A question of particular interest is how the ecology
of fluctuating environments relates to that of equilibrium systems. Equilibrium theory says
that the more similar two species are in their modes of regulation, the less robust their coex-
istence will be; that is, the volume of external parameters for which all populations persist
shrinks with increasing similarity. In this study we will attempt to generalize these results
to temporally varying situations, and establish the precise mathematical relationship between
the two. Our treatment considers unstructured populations in continuous time with periodic
attractors of fixed period length, where the periodic behavior is due to external forcing as
opposed to being indigenously generated. Within these conditions our treatment is general.
We provide a coherent theoretical framework for defining measures of species similarity and
niche. Our main conclusion is that all factors that function to regulate population growth may
be considered as separate regulating factors for each moment of time. In particular, a single
resource becomes a resource continuum, along which species may segregate in the same manner
as along classical resource continua. Therefore, we provide a mathematical underpinning for
considering fluctuation-mediated coexistence as temporal niche segregation.

Keywords: regulation, niche, coexistence, fluctuations, structural stability, robustness

1 Introduction

Much of the early theory on coexistence concerned equilibrium situations (Volterra 1926, Gause
1934, Hardin 1960); the main conclusion was that if two or more species consume the same
resources, only one will persist. Later Levin (1970) and Levins (1974) realized that this inference
generalizes from resources to all those factors that are involved in a density-dependent feedback
loop. After Krebs (2001, p. 288), Case (2000, p. 146), and Meszéna et al (2006) we will call these
factors regulating variables (they are equivalent to what Levin 1970 and Chesson 1994 call limiting
factors, and what Chesson and Huntly 1997 call competitive factors). The competitive exclusion
principle then states that at equilibrium the number of coexisting species cannot exceed the number



of regulating factors. This simple picture emerging from equilibrium theory came under attack,
however, from at least two quarters. First, the practical utility of the principle came into doubt.
Second, the question arose whether fluctuating dynamics would invalidate the competitive exclusion
principle, something that seems to depend on the equilibrium assumption crucially.

The problem of practical usefulness arises when there are infinitely many regulating factors
and therefore there is no upper limit to the number of coexisting species. Though MacArthur and
Levins (1967) argued persuasively that limiting similarity is the expected behaviour in the context of
the Lotka—Volterra model, the work of May and MacArthur (1972), May (1973) and Roughgarden
(1979) demonstrated that it is always possible to have arbitrarily tight species packing, suggesting
that the competitive exclusion principle is more of a mathematical curiosity than an empirically
relevant idea (Rosenzweig 1995). On the other hand, it has been observed mathematically that
while there is no fixed lower bound to similarity, not all configurations are equally robust: certain
coalitions of species are more sensitive to external perturbations than others. While coexistence of
similars is possible, it is restricted to a narrow range of environmental parameters. Therefore, the
limiting similarity principle can be recovered by shifting the emphasis from analyzing the stability
of coexistence to looking at its likelihood, i.e. how wide or narrow is the range of parameters that
allow for the persistence of all populations within the system (“coexistence bandwidth”, Armstrong
and McGehee 1976). Large volumes of parameter space allowing for coexistence are called robust
systems; narrow ranges are called unrobust. A system with a very narrow coexistence bandwidth, i.e.
one that is unrobust is unlikely to persist for long, and therefore some sort of limits to similarity are
expected to emerge after all. This new, reformulated limiting similarity principle will only be useful
though if robustness decreases with increasing similarity, independent of model details, at least for
species that are already similar enough. That this is so has been demonstrated rigorously for fixed
point models by Meszéna et al (2006). They showed that as species get more similar in how they
relate to the regulating factors (more specifically: if species growth rates show similar sensitivity to
a change in the regulating variables, or the species have similar impacts on the regulating factors)
then the robustness of their coexistence declines to zero. Hence the criticism of the competitive
exclusion principle that it is unable to address the question of how similar two species may become
has been resolved through considering the robustness, as opposed to the stability, of coexistence.

However, there remains the second important criticism of the competitive exclusion princi-
ple, namely that the ubiquity of temporal fluctuations in real ecosystems calls the equilibrium
assumptions behind the principle (and behind the more modern theory of robustness of coexistence)
into question. The consequences of the equilibrium conditions were thought to lose validity in a
fluctuating system (Hutchinson 1961). Presumed invalidity of the competitive exclusion principle
was developed into an ecological world view by Huston (1979). However, as Abrams (1983) and
Chesson (1991) pointed out, the need for ecological segregation is not alleviated by environmental
fluctuations: it just seems to be that way if we look at segregation strictly in the sense of resource
partitioning. Chesson and Huntly (1997) not only argued for the verity of the need for ecological
segregation but demonstrated the flaws inherent in those theories that look upon fluctuations as a
means to invalidate the competitive exclusion principle.



Rigorous theories of coexistence in a fluctuating environment also imply the need for ecological
segregation. Levins (1979) established the role of higher moments as effective regulating factors in
situations where the densities are fluctuating arbitrarily in a bounded region of phase space. This
means that e.g. the time-average and variance of a resource both act like effective resources and
thus two species could stably coexist on them — provided that interspecific competition between
the two species “consuming” the mean and the variance of the resource is lower than intraspecific
competition within each of the species. Chesson (1994, 2000, 2009) provided a classification scheme
for the coexistence maintaining mechanisms. Beyond fluctuation-independent niche segregation, he
established the “effect of relative nonlinearity” (which occurs when species have different nonlinear
responses to competition) and the “storage effect”, which is based on species-specific responses to
the environment, covariance between the environment and competition, and buffered population
growth. His approach is based on a small-fluctuation approximation. Intuitively, the storage effect is
considered a mathematical representation of temporal niche segregation (Chesson and Huntly 1997,
Chesson 2000).

In this paper we aim to provide a solid ground for the concept of temporal niche segregation
and its role in maintaining coexistence. That is, we intend to formalize the commonality between
temporal and more conventional types of niche segregation. Our starting point is Meszéna et al
(2006), that has already provided that commonality in a stable environment. We restrict our attention
to externally forced periodic dynamics with a fixed period 7. Moreover, we assume the dynamics of
the regulating variables to be fast compared to population dynamics. Within these restrictions we
keep our considerations general. In particular, we do not need the assumption of small fluctuations.
In Meszéna et al (2006) the common ground was segregation with respect to the regulating variables.
In line with this biological intuition, here we consider the regulating variables at different instants of
time to be different regulating variables. In this scheme temporal niche segregation is also a type of
differentiation with respect to regulating variables. Therefore, all considerations in Meszéna et al
(2006), especially decreasing robustness with increasing similarity, carry over to the fluctuating case.
We will discuss the realationship between our and Chesson’s (1994) formalization as well.

We begin by introducing the fundamental concept of regulating factors (Section 2), and then
reviewing the basic framework for fixed points in Section 3. Then, in Section 4 we extend the
theory to periodic orbits in phase space and rederive the basic formulas in a periodically fluctuating
environment. Finally, as a demonstration we apply the results to a simple example in Section 5.

2 Regulating factors

Populations with fixed demographic parameters grow exponentially — but, since the parameters
usually dependent on density and external influences, population growth can take on virtually any
form. However, one may still treat any change in population densities as locally exponential in
time, where the instantaneous growth rate is a function of both density dependent and independent
variables. Taking density dependence into account, one can introduce the concept of regulating
factors: the set of variables involved in the feedback between growth rates and densities. In other



words, all interactions between the individuals of the populations have to be mediated by the
regulating variables: fixed values of these factors would lead to the exponential growth of all species
in the community.

In this context, the growth of any population in any model may be written as

di(r)

o =ri(R(x1(2),...,x.(t)),E,t) (i=1,...,L), (1)

where x;(t) = In(n;(¢)) is the natural logarithm of the ith population’s density n;(z) at time 7 (the
logarithmic scale having been introduced for future convenience), r; is the growth rate of the ith
population, E is the collection of environmental and all other density-independent parameters (the
“external” variables), L is the total number of species in the system and R is the vector of regulating
factors (the same as I in Meszéna et al 2006), which of course is a function of the densities. In
case one has environmental parameters that fluctuate with time, only the time-independent parts go
into £ and the rest should be considered as an explicit time dependence of the growth rates. For
example, if a certain ecological situation causes the (density-independent) intrinsic rate of growth ry
to fluctuate as ro = a(1+ e€cos(wt)), then the vector E refers to the parameters a, € and ®, not ry as
a whole. One does not lose generality by this choice of convention, and it will make differentiation
of r; with respect to £ more convenient later on.

There are two things neglected by Eq. (1). First, it considers unstructured populations only.
Second, it assumes that R depends on the instantaneous values of the population densities — in other
words, it disregards time lags in the regulation of populations. Apart from these restrictions however,
these population dynamical equations are general: any continuous time, continuous density model
may be stated in the form of Eq. (1).

The vector of regulating factors R deserves special attention. In general, its elements will
include resources, predators, and other discrete entities. But the number of regulating factors is
not necessarily finite. The paradigmal example for infinite dimensional regulation is the resource
continuum, e.g. the continuum of foods of different sizes. In this case, the function g — R(q)
constitutes the vector R, where R(q) denotes the concentration of food with size g. One can consider
g as a continuous index of the vector R. In general, the continuous index variable can be more
than one dimensional (e.g. describing size and hardness of the food). It is also possible to have
discrete and continuous indices at the same time, e.g. if two different kinds of food both have size-
distributions, or if a food size continuum and various predators function to regulate the populations.
To emphasize the role these indices play in our analysis, here we adopt the notational convention
that the boldface type will be reserved for quantities that carry the same indices as R.

3 Summary of the fixed point theory

3.1 Limiting similarity of species

The idea behind Meszéna et al’s (2006) general theory of niche and limiting similarity is to realize
that any system will behave like the Lotka—Volterra model near a stable fixed point. One therefore
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has to linearize the growth rates around the equilibrium point and analyze the robustness (i.e.
the range of parameters where all densities are positive) of the simpler linear model (May 1973,
Vandermeer 1975). Dynamical stability of the community, i.e. negative real parts of the eigenvalues
of the community matrix, is assumed (there is no point in looking at the robustness of a dynamically
unstable system). To obtain the set of parameters that allows for coexistence, one calculates the
response of the densities to a change in the external variables E. A wild response even to small
changes indicates unrobust coexistence, one that is oversensitive to external perturbations and is
therefore unlikely to persist for long.

So we have to take the set of equilibrium equations and differentiate them with respect to E. At
a fixed point attractor Eq. (1) becomes time-independent so that the left hand side is zero, and the
growth rates on the right hand side are independent of time. Since at a fixed point all growth rates
are zero, we have L algebraic equations:

ri(R(x7,...,x7),E) =0, 2

where the asterisk in the superscript refers to equilibrium values. Implicit differentiation with respect
to E yields
or; R dx;
Z —=—=2 =0, 3)
JdR dx; dE

where summation (integration) for all discrete (continuous) indices of R is understood in the scalar
product (dr;/dR)(dR/dx;). This formula yields the linearized growth rates as a function of the
perturbations of the densities, and as such, connects an arbitrary ecological model with the classic
Lotka—Volterra equations.

The first factor of this scalar product describes the response of the ith growth rate to a change in
the regulating variables, i.e. the sensitivity of the population to changes in regulation; the second
describes the impact of a change in population densities on the regulating factors. These two vectors
turn out to be very important in our analysis. The first one,

8r,-
JOR’
is the sensitivity niche vector. Originally it was defined with an extra minus sign in Meszéna et al

(2006) to imply resource depletion — but, since the generalized regulating factors could be anything,
not just resources, we will not use this convention here. The other quantity,

Si = “4)

JR
.= —
J axj’

(&)

is the impact niche vector (the C of Meszéna et al 2006). Again, we use a slightly different
convention: originally the impact vector was the derivative of R with respect to n; = exp(x;), not x;.
This is to make the formalism consistent with what will follow in Section 4. These vectors may be
calculated for any population size, but their real utility comes through when evaluated at equilibrial
densities, as they are in Eq. (3).



Let us define the community matrix as the product of the two niche vectors:

8rl~ 8R . 8rl~

ij=S1j=525—=5-,
=T 9R 9x; o

(6)
where, as before, summation or integration for all indices of R is assumed.
With these notations and conventions established, Eq. (3) can be rewritten as

Br,- L dxj
—+Yag—L=0. (7)
OE J; TdE

Rearranging and inverting the community matrix solves this system of equilibrium equations:

dx* L ar;
@ = L gg ®

or
L
aE = ok ©

where J and d;; are the determinant and the classical adjoint of a;;, respectively. Also, it is understood
that the inverse operation ai_j1 always refers to inverting the whole matrix as opposed to calculating
the inverses of the individual matrix elements.

Small values of |J| indicate weak community regulation and strong dependence on population
densities so that even a slight change in abundance may drive certain populations to extinction. This
means that in this case coexistence is only possible for a narrow range of environmental parameters
and is thus not robust. Since the determinant is simply the product of the eigenvalues, knowing all
eigenvalues of a;; is equivalent to knowing the determinant. More importantly, the largest eigenvalue
(which will still be negative for a stable system) may be used as a proxy for the loss of robustness:
as the largest eigenvalue approaches zero, so does the determinant, signaling that the system has
approached a bifurcation point.

3.2 Niche

The biologically more intuitive sensitivity and impact niche vectors also have the capacity to measure
robustness besides the determinant of the matrix a;;. As shown in Meszéna et al (2006), it is always
true that

< %%, (10)

where 7§ and 71 refer to the volume of the parallelepipeds spanned by the sensitivity and the impact
vectors of each species, respectively. Note that these volumes remain finite dimensional even if
there are infinitely many regulating factors, because they are spanned by as many vectors as the
number of species considered. The volume 5 (#1) will be zero if the collection of all sensitivity



(impact) vectors is a linearly dependent set, and will be small in the case of near linear dependence.
A corollary of this is that the volumes will be small if any two vectors are nearly parallel to one
another. Therefore coexistence will not be robust if either the sensitivity or the impact vectors are
too similar to each other, making Vs or Y1 and thus the product of the two volumes small. In theory
it would be possible that a small ¥ is compensated by a large ¥1 leading to robust coexistence, but
in practice this probably never happens. On the contrary, a small (large) value of one of the volumes
usually implies a small (large) value of the other, since corresponding sensitivity and impact vectors
tend to be similar — a mathematical way of saying the biological fact that a population will generally
use and therefore influence the same resources that it depends upon for its survival. In conclusion,
species have to differ in their responses to the regulating factors as well as in the way they modify
them if they are to coexist robustly. Similarity of species is measured by the volumes spanned
by the sensitivity and impact vectors, two quantities that can mechanistically and very simply be
obtained from the model definition (though usually the numerical values of the equilibrium densities
also need to be known). The more orthogonal the vectors of the species, the less similar they are.
Coexistence of similars is not impossible but sensitive to perturbations of the environment, as is
the coexistence of species that are weakly regulated (indicated by niche vectors of small length),
since in both cases the volumes defined by the vectors will be small. The general way of making
this instability more robust is to make regulation stronger and the coexisting species less similar, i.e.
making the vectors longer and more orthogonal to one another.

Leibold (1995), and Chase and Leibold (2003) already introduced a modernized ecological
niche concept that was based on the two-way interaction between a population and its environment.
Their version of the impact vector is almost identical to ours. Our sensitivity vector is the normal
vector of the zero net growth isocline (ZNGI) describing Leibold’s concept of the requirement
niche. We consider only the slope, but not the location, of the ZNGI as a descriptor of the niche,
because the impact and sensitivity niche vectors thus defined are the proper generalizations of the
Hutchinsonian resource utilization function describing the partitioning of the niche space: their
scalar product (overlap) yields the competition coefficients (see Pigolotti et al 2008 for the case of
classical resource continua).

The essential aspect of the Hutchinsonian niche space is that coexisting species avoid competitive
exclusion via partitioning that space (Hutchinson 1978). In the context of the described theory, the
species should differ with respect to the regulating variables. Therefore, the proper concept of niche
space is that of the set of all regulating factors. The impact and sensitivity niche vectors can be seen
as the generalization of the resource utilization function. In the case of a continuum of regulating
variables, the continuous index (like the food size g in the example in Section 2) constitutes the
“niche variable” or “niche axis”. To allow for generality while keeping the spirit of Hutchinson’s
parlance, one may want to refer to the discrete indices of the regulating variables also as (discrete)
niche variables. Then, the niche space to be partitioned is the space spanned by the niche variables.
It should not be confused with the space of regulating factors (or regulation space), which is the
space of all the possible combination of values the regulating factors may assume. For instance, in
the case of the food size continuum, niche space is one dimensional, while regulation space is the



infinite dimensional function space of the functions R(g) (see Fig. 1 for a visual representation of
this difference).
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Figure 1: Niche space and regulation space for the cases of discrete (upper row) and continuous (lower
row) resources. The discrete case is exemplified by three resources (regulating factors): nitrate (NO3 ), light
(photosynthetically active radiation, PAR) and water (H,O). Now the niche space (defined as the set of
regulating factors) is a 3-element set (left figure). These resources are always present in specific quantities;
the central figure in the upper row plots these three numbers. They form a vector of three components, a
specific realization of the vector R. The regulation space (figure on the right) is the vector space that contains
all possible vectors R. Having three distinct regulating factors (i.e. a 3-element niche space) means that the
regulation space is three dimensional. In the continuous case we assume the existence of a fine gradation of
various seed sizes that a hypothetical bird community may consume. That is, between the limits defined by
the smallest and largest possible size, all seed sizes are available and are potentially regulating. The niche
space therefore has infinitely many elements: one for each seed size. These elements are linearly ordered,
creating a one-dimensional space (left figure of lower row). As in the discrete case, one may plot resource
availabilities for all seed sizes — but this time, instead of a vector, one obtains a function (central figure of
lower row). The space that contains all these possible functions has infinitely many dimensions and thus it is
impossible to visualize on paper. Notice however that while the regulation space is infinite dimensional, niche
space has only one dimension and is easily visualizable.

4 Extending the theory to periodic orbits

Recall the general continuous-time dynamical equations of the system (Eq. 1):

di(r)

0 =ri(R(x1(2),...,x.(t)),E,t) (i=1,...,L). (1)



Now we shall assume that the L-component vector field defined by the right hand side of Eq. (1)
induces a unique, stable, periodic flow @;(x?,...,xY E,t) with period T and initial conditions
1Y = x;(0), where the initial moment #, was chosen to be zero without loss of generality. It is a
very important restriction at this point however that we assume 7 not to change in response to
perturbations — in other words, we assume that it is independent of E. This assumption is more or
less reasonable when the source of the periodicity is external forcing like seasonality, but usually
breaks down if the cycles are internally generated by the dynamics.

Now, if we were able to translate the system into an equivalent discrete model with time step T,
then this new system would possess a fixed point to which one could apply the formalism of the
previous section. More specifically, let us write the logarithms of the discrete rates of growth 7; that
we obtain by stroboscopically recording the state of the system defined by (1) every time 7. Various

expressions are possible, the more useful of which are

T
e E) = [ n(oar (11)

and
O, Y E) =150, 2 E) =)

19

(12)

where r; are the growth rates as defined by the right hand side of Eq. (1), 7 is the time integration
variable and IJ; is the so-called stroboscopic (or Poincaré) map. This map transforms the initial
densities into the densities one period later, so that by definition

(0, Y E)y =2, 2 ET) = xi(T). (13)

When the dynamics is flowing on the periodic attractor, 7;(x},...,x],E) = 0, where x} are the
equilibrium initial conditions (to which the system returns after time 7). Naturally, all the x} are
functions of E. Implicit differentiation of this condition with respect to E yields

BF, oF; dx;

Za OdE

(14)
Rearranging the equation and inverting the matrix multiplying the second term above, we get

-1
dx* 8r, 8fj
= —, 1
Z (axj> JE (as)

Now the only thing left to be done is to express the derivatives of 7; in terms of the continuous
dynamics. The response of 7; to changes of the external parameters is expressible from Eq. (11) as

7 (T dr(r)
JE Jo OE

dr. (16)



The derivative of 7; with respect to the initial conditions may be obtained using the stroboscopic
map:

of  oI; ox) (17)
8x(])- B ax‘} 9)6(])-7
which is shown to be 97 T 9r;(t) IR(7)
P ri(T T _ S5,
ox9 yEXp( o JR(7) dx;() ‘ ) % "

in Appendix A. Apart from the calculation leading to the above Jacobian for the stroboscopic
map, Appendix A also contains the definitions for the time-ordering operator .7 and the matrix
exponential Exp therein (J;; is the identity matrix). As before, summation or integration for all
indices of R is assumed in the exponent above.

Substituting Egs. (16) and (18) into Eq. (15), we finally arrive at

vy & T 9ri(t) OR(7) N\ T or(n)
aE - j; (9 EXP< o 9R(7) 9x,(1) ‘”) _6”) /0 oe 9" (19

This formula looks considerably more complicated than its equilibrium analogue (Eq. 8), but the
interpretation will turn out to be the same. Let us define the time-dependent niche vectors in the
following way. The sensitivity will be

_dri(7)
for every moment 7 € [0,7). Similarly, the impact for any moment will be
o JR(7)  JR(7) _
IJ(T)— an(T) - al’lj(T)n](T)’ (21)

where the form of the vector has also been indicated on the linear scale, since that will be more
useful for applications later on.

We shall see that these vectors have the capacity to measure the robustness of the system — just
as they did in the fixed point case. The scalar product of these two vectors for all indices of the
regulating factors will yield a community matrix for every moment 7:

ari(t) IR(7)

aij(T) = Si(T)Ij(T) = aR(’L’ ax]'('f

: (22)

~—
~—

Notice however that the exponent in Eq. (19) contains not just the scalar product of the sensitivity
and impact vectors, but this product integrated over time. Let us denote the integral of g;;(7) with
A,‘jl
r T dri(t) IR(71)
A,-‘:/ a;i(t)dt = : dr. 23
1= Jo 9= SR () o (n) 23)
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In this formula we sum or integrate over all indices of R, plus integrate over time. The time
integration is in principle no different from all the other integrals/summations involved: as a matter
of formal analogy, we could even say that 7 is just another continuous quantity indexing the vector
of regulating factors, for which we need to integrate over the interval [0,7). This observation
allows us to redefine the concept of a regulating factor. Instead of considering R(7) a different
vector for every moment 7, we can regard the function 7 — R(7) as a single vector of regulating
factors with the extra continuous index 7 (cf. Meszéna and Metz in press). If we accept this formal
analogy between resource continua and time, then the cyclic time variable 7 itself becomes a niche
variable. Let us call the vector R(7) at any one particular moment 7 the instantaneous vector of
regulating factors, and R(-), where 7 plays the role of an index, the temporal vector of regulating
factors. All quantities carrying these same indices (i.e. time-dependent boldface ones) should inherit
this nomenclature, therefore we may talk about instantaneous and temporal sensitivity and impact
vectors as well. For the purposes of our theory, the temporal niche vectors are the ones we need, as
opposed to the instantaneous ones.
Eq. (19) can be rewritten in terms of A;;:

dx; - LT ar(n)
i ——j;<§Exp(A,'j)—5,~> /0 IE dr. (24)

The matrix A;; is the scalar product of the femporal sensitivity and impact vectors for all indices
of R(+) (which therefore includes time). If any two species have very similar temporal sensitivity
(impact) vectors, the determinant of A;; will be small. The question is: does a small det A;; imply
that det(.7Exp(A;j) — 6;;) will also be small and thus the response of the equilibrium densities large?
This question is answered affirmatively in Appendix B, implying that the product of the volumes
spanned by the temporal sensitivity and impact vectors — cf. Inequality (10) — is the proper measure
of robustness in our context. Therefore we may conclude that the biological content of Eq. (19)
is exactly equivalent to the meaning of Eq. (8). Treating every regulating factor at every moment
within one period as a different regulating factor defines the full space of regulating variables now,
and each species has a fixed temporal sensitivity and impact vector in this extended space. This
linear space of functions is the one in which the volumes spanned by the niche vectors have to be
calculated. We will refer to the corresponding extended niche space (the set of regulating factors) as
the temporal niche space (see Fig. 2).

Naturally, the regulating factors at different times cease to be different from one another in
the absence of fluctuations. This intuitively obvious fact can be demonstrated mathematically by
showing that Eq. (19) simplifies to the time-independent Eq. (8) if the attractor of the dynamics is a
fixed point instead of a limit cycle. In that case, the “period” T can be chosen arbitrarily, so let us
choose an infinitesimal d7 for the period. Then Eq. (19) will read

d L dr; OR “lor;
i =X (7o (Gage o) o) Gpe =
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Figure 2: Instantaneous and temporal niche and regulation space for a hypothetical bird community. The
birds feed on seeds of various sizes, use specific nesting sites (N), and are preyed upon by a predator (P). The
first row depicts an equilibrium community: the left side shows the niche space, the right side shows a sample
element of regulation space (i.e. a specific vector R). The second row does the same, but for the temporal
niche and regulation spaces, where every regulating factor at every moment is a different factor, leading to the
temporal R(-) on the right side. Notice that the dimension of the niche space has increased by one.

Since the matrix in the exponent is now a constant, time-ordering (see Appendix A) does not play a
role and thus the exponential function can be Taylor expanded to linear order in time:

dx* L i R Yor, dri OR\ ' 9r;
dE _Z( IR dx; AT 5’7> dr Z(@RaxJ-) OE’ (26)

which is identical to Eq. (8). As expected, our theory contains the equilibrium situation as a special
case.

See Appendix D for an alternative derivation and form of the niche vectors that is interesting but
awkward from a computational point of view.
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5 Example: a minimal model of purely fluctuation-maintained coex-
istence

Here we apply our formalism to a minimal model of temporal niche segregation. It is a two-species
Lotka—Volterra model with periodic ry(7) and K(¢) parameters, and competition coefficients that
are all equal to one. This means that the determinant of the community matrix will be zero at any
one moment: coexistence is maintained purely by fluctuations. This assumption is not necessary
for fluctuations to have a stabilizing effect — however, we want to focus strictly on the effects of
fluctuations and not have any other mechanisms that might contribute to coexistence; hence the
choice for our competition coefficients.
Formally, the model is defined as

0y (1- 0 e @)

ni(t) dt Ki(1)
with
roi(t) = pi(1 + recos(@t + ¢;)) (28)
and
Ki(t) = k(1 + K. cos(@t + ¢;)). (29)

Here p; and x; measure the time averages of the intrinsic rate of growth and the carrying capacity
of the ith population, respectively; r. and K. are the relative amplitudes of their fluctuations with
angular frequency ® (so the period is T = 27/ ). Note that ry; and K; oscillate in-phase for each
population. The difference A¢ = ¢» — @; of the phase shifts characterizes the relative timing of the
two populations.

The two populations are regulated by the same, single regulating variable: the sum of the
densities. The fact that there is only one regulating factor can be made transparent by reparametrizing
the model (MacArthur 1972) as a two-species competition model for a single resource R(7):

= b;(t)R(t) —m;(t) (i=1,2), (30)

and
R(t) =Ro—ny(t) —na(1). 3D

Here we assumed fast resource dynamics; Ry corresponds to the maximum possible amount of

resource. The factor 0
roi(t
bi(t) =

characterizes the resource dependence of the population and

(32)

mi(e) = (Ki‘)t - 1) roi(t) (33)
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can be seen as the resource-independent mortality rate.

For constant parameters the single regulating factor allows for the robust persistence of only
one species. In this situation the model reduces to the well-known case of density-dependent
selection (Metz et al 2008): competition is won by the species with the higher K; value (K-selection,
MacArthur 1962), or — equivalently — by the species with the lower equilibrium resource level (R*
rule, Tilman 1982).

The issue of interest is that oscillations of the parameters result in a periodic solution. In
turn, periodicity of the solution transforms the single regulating variable R into the continuum of
regulating factors R(-). With this in mind, let us calculate the temporal sensitivity and impact vectors
(functions) from Egs. (30) and (31):

_ c')r,-(t)

Si = S,‘(Z) 3R(l) = b,‘(l‘), (34)
and
L= 1) = gz((?) ni(t) = —n (). (35)

The sensitivities are equivalent to the birth rates at each moment, assuming the available total
resource is unity (see Eq. 30). The populations are more sensitive when their per-unit-resource birth
rates are high and less so when they are low. The magnitudes of the impacts are simply measured
by the population densities. This in effect means that the per capita impacts are all the same: each
individual consumes exactly one unit of resource in a unit time, therefore the total consumption per
unit time is simply the total density. The negative sign of the impacts indicates that the populations
reduce the amount of resource available. Should our model be formulated for two populations who
compete indirectly via a shared predator (apparent competition, Holt 1977) instead of a shared
resource, the impacts would be positive, since the presence of the populations will tend to increase
the predator population, not reduce it.
The community matrix will be the scalar product of S;(z) and /;(¢) in time:

T T
Aij:,/() Si(’C)Ij<T)dT:—/O bi(T)l’lj(’C)dT:—Tbil’lj:—T(EWj+COV(bi,nj)), (36)

where we used the identity pg = p g+ Cov(p, g), the overline denoting time averaging and Cov(p,q)
being the covariance of p and g. Note that a lack of covariance between b; and n; leads to
det A;; = det (—Tbi-nﬁ) = 0. Therefore, nonzero covariance between the densities and the b;s is a
requirement for robust coexistence. Obviously, the constant case violates this requirement. This
covariance is the same one that is so essential to Chesson’s (1994) general theory of the temporal
storage effect.

It is instructive to calculate b;(¢) for small fluctuations, i.e. for small . and K-:

~ pi(l+recos(ot+¢;))  pi B '
~ (1 + Kecos(or + ¢p)) E'(l T (re = Ke)cos(ar + 1)) 7)

bi(l‘)
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Observe that b;(r) oscillates in-phase with ry;(¢) and K;(¢) for r. > K, but in opposite phase for
re < K.. The other constituent of the covariance, n;, would reach K; in a constant environment.
In the case of a fluctuating K;(¢), one can expect n;(t) to follow the changes in K;(z) with some
phase delay. Therefore, if r, > K, and the r(;s are large enough to minimize the delay of the n;s,
then b; and n; oscillate nearly in phase. In this case, each population becomes sensitive to resource
concentration levels at the time period when it uses the resource most intensively. If A¢ differs from
zero significantly, this situation corresponds exactly to the traditional concept of niche segregation:
the resources at different instants of time are considered different, and each population depends
on the very same resource which it uses. Consequently, we expect robust coexistence with the
described parameter combination.

These results are in line with a more Chessonesque analysis of the same model. The application
of Chesson’s framework to this model can be found in Appendix C. There we find that the only
coexistence mechanism operating is the storage effect, which reads

Al = %(re — K.)(Cov(E,n,) — Cov(Ein,)) (38)
1

in our model. Compare the two covariance terms above with the expression for the community
matrix A;; that we obtained with Eq. (36). At first they might look different, but if one applies
the small fluctuation approximation in Eq. (37) to the community matrix then A;; — Ay (r=1,
i = 2) will precisely correspond to Al. In Chesson’s approach, the difference of the elements
in one column of A;; gives the storage effect; in ours, robustness is determined by detA;;. The
difference in our approaches has its roots in the fact that Chesson uses invasion criteria to assess
coexistence, whilst we are interested in stability only in the vicinity of the attractor. Calculating the
difference of the column elements corresponds to the first approach, since the invasibility criterion
in the Lotka—Volterra model is that intraspecific competition has to be greater than interspecific
competition within the resident (so A;; —Ap; > 0 means Species 2 can invade Species 1). On the
other hand, we also know that the fixed point of stable coexistence in the same model disappears
precisely when the determinant of the community matrix becomes zero, so what we are doing is
simply measuring how close the system is to this critical point. Therefore, the difference between
the two approaches is the particular coexistence criterion they consider, which are equivalent in the
context of the Lotka—Volterra model.

The simulations (not shown) confirmed that if the two populations have identical parameters
except for A¢, their average densities are the same, and only the relative phases in which they
oscillate varies. Then we gave a small relative advantage of 10~ to Species 1 by increasing k. In
the various runs the phase difference A¢ was gradually decreased from 7 to near zero. As expected,
decreasing A¢ increases the response of the average densities to the perturbation of k) (Fig. 3 (a)
and (b)). Coexistence proved to be robust when the two oscillations were out of phase (A¢ = 7,
corresponding to the kind of parameter combination described above). Lower values of A¢ resulted
in significant reduction of the average density of the species with the smaller k, however (Fig. 3 (c)
and (d)). Having obtained the community matrix A;; by numerically integrating over one full period,
its determinant was calculated as a function of A¢ (Fig. 4). Observe that the determinant becomes
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Figure 3: Top row: robust coexistence maintained by out-of-phase oscillations (A¢ = 7). The sensitivities
S1(¢) and S»(¢) are shown in (a) over one full period; (b) shows the population densities n(¢) and ny(¢),
which are equal to the impacts 7 (t) and I (¢) times (—1). Since both of these quantities oscillate out of
phase, they exhibit reduced similarity, leading to robust coexistence. Bottom row: unrobust coexistence with
a smaller phase difference (A¢ = 0.327). Observe on (c) that the sensitivities S; (¢) and S, (¢) have almost
maximal similarity, and on (d) that the density n,(¢) of Species 2 is very small: any further decrease of the
phase difference could cause it to go extinct. Parameters: x; = 1.0001, x; = 1, K. = 0.02, p; = p> = 80,
re =0.04, T =1, ¢; = O (therefore ¢, = A¢).

very small around A¢ ~ 0.327 = 1. This is consistent with the results in the lower row of Fig. 3,
where the 10~ relative disadvantage of Species 2 almost leads to its extinction at A¢ = 0.327.

6 Discussion

In this paper we extended Meszéna et al’s (2006) theory of coexistence and niche from fixed point
dynamics to cycles of constant period, without any constraints on the amplitude of the fluctuations.
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Figure 4: Loss of robustness with increasing similarity. Horizontal axis: phase difference A¢ in radians;
vertical axis: determinant of A;; as a measure of robustness. For practical purposes, detA;; becomes almost
zero when A¢ < 1; it becomes exactly zero at A¢g = 0. The curve is smooth everywhere, though it does
change very rapidly around A¢ ~ 1.

The emerging picture is a formalization of the concept of temporal niche segregation. The original
theory required species to segregate with respect to the variables involved in their regulation as a
condition for robust coexistence. Accordingly, temporal niche segregation means segregation with
respect to the timing of population regulation within the cycle: this is done by considering the values
of a given regulating variable at different instants of time within the period as different regulating
variables. Generally, the niche of a species is characterized by the species’ impact on and sensitivity
towards the regulating variables. For the cyclic case it means that the time-courses of the impacts
and the sensitivities within a period should differ between the species.

In principle, our treatment was independent of whether the cyclic dynamics originates from
external forcing or from the internal dynamics of the system. However, we assumed that the period
T was unaffected by the perturbations, with respect to which robustness was considered. This
condition is naturally satisfied in the case of external forcing, but is usually invalid otherwise, i.e.
when the cycles are generated internally by the dynamics.

Our study was motivated by the wish to have a unified mathematical theory of the ecological
niche. After the Lotka—Volterra model had fallen out of favor because of its uneasy relationship
with empirical details, it became the prevailing attitude to study coexistence in specific mechanistic
models and have generalized conclusions only on a verbal level. As the assumptions and conclusions
of the different models are often difficult to compare, and no model is immune to the criticism
of neglegting important details, the predictive power of this approach is limited. Instead we
prefer to have a consistent theory with clear mathematical foundations on the general level that
maintains a well-defined connection to verbal theory as well as to specific models of arbitrary
detailedness. Adaptive dynamics (Geritz et al 1998, Meszéna et al 2005) and the theory of structured
populations (Caswell 2001, Diekmann et al 2003) demostrated the possibility and usefulness of
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such a framework within the context of population biology. Within such a framework, there is a
clean way of incorporating additional details whenever it is necessary.

The perturbation approach makes a general theory of coexistence possible. It was demonstrated
that robustness of coexistence against the change of external parameters is tied to niche segregation
in a well-defined sense (Meszéna et al 2006). As it is sufficient to consider small perturbations
only, no generality is lost by carefully made linearization. This linearization establishes a general
connection between an arbitrarily complicated model of coexistence and the Lotka—Volterra model.
Unfortunately, the concept of a resource utilization function as a descriptor of the niche of a species
does not generalize: one has to linearize the two legs of population regulation separately, leading to
the concept of impact and sensitivity niches.

Intuitively, three types of niche segregation can (and have) been distinguished: functional,
habitat, and temporal segregation (Christiansen and Fenchel 1977). Functional segregation is
covered by the basic fixed point theory. Habitat segregation requires the handling of the spatial
structure of populations — this has been achieved by Szilagyi and Meszéna (2009a,b), not just for
spatial but for arbitrary population structure as well. Finally, temporal niche segregation in a periodic
environment is what this paper was about. Parvinen and Meszéna (2009) studied a different kind
of temporal segregation, one that is inherently tied to spatial structure as well: the coexistence of
successional species. Szildgyi and Meszéna (2010) applied the framework to fluctuation-mediated
coexistence by the effect of relative nonlinearity.

Today the reference point for any theory of coexistence in a fluctuating environment is the
framework of Chesson (1994), both because of its completeness and its generality. Chesson
distinguishes between two types of coexistence-affecting mechanisms that are specifically induced by
environmental fluctuations (Chesson 2000): the storage effect and the effect of relative nonlinearity.
The storage effect is essentially a result of temporal niche segregation, whilst the effect of relative
nonlinearity emerges from a difference between the species’ (nonlinear) competitive effect curves as
a function of their densities. One very important question is how these mechanisms (and Chesson’s
whole framework) relate to ours. For one thing, the two approaches differ in their coexistence
criteria: Chesson considers mutual invasibility; we only require that the population dynamical
attractor be locally stable (note that mutual invasibility is a sufficient but not a necessary condition
for coexistence, at least when demographic stochasticity can be ignored; see Szildgyi and Meszéna
2010). A second difference is that, strictly speaking, Chesson’s theory is only valid for small
fluctuations. In our framework, however, there is no limit on the amplitude of population oscillations.
Regardless of the small-fluctuation approximation though, a more formal analogy can be drawn
between the two approaches. If the growth rates are linear functions of the population densities,
neglecting higher-order terms will not affect this property. Therefore, the resulting model in
Chesson’s scheme will be equivalent to a Lotka—Volterra model with fluctuating parameters. In
fact, it will be the very same model as the one we used in our example (Eq. 27), provided that the
amplitudes of the fluctuating parameters are not very large — i.e. after linearization according to
Eq. (37). The analysis of this model using Chesson’s framework is performed in Appendix C, where
the results from the two approaches can be compared. This comparison formally establishes the fact
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that Chesson’s storage effect can be seen as temporal niche segregation, something that has often
been stressed by Chesson himself (Chesson 1991, 1994, 2000).

When the growth rates are nonlinear functions of the densities, the analysis is more complicated,
since relative nonlinearity might also contribute to species coexistence. Unfortunately, we cannot as
yet provide a detailed formal analogy between the two frameworks in this case. We would like to
emphasize, however, that our methodology does apply to models with relative nonlinearity, as long
as the period of the oscillations remains fixed. This basically precludes the analysis of indigenously
generated cycles, since their period will in general depend on the perturbed parameters. But other
models, where periodicity is externally forced, may be analized in our way. One example is provided
by the model of Szildgyi and Meszéna (2010), who considered the simplest possible model that
produces relative nonlinearity. Their choice for the environmental fluctuations was a Gaussian
white noise, but no essential part of the model is altered if one replaces the white noise with some
periodic function. In this case, both their conclusions and ours hold simultaneously. We are thus
provided with a specific model which may be studied using our method, and in which only relative
nonlinearity is operating as a coexistence-affecting mechanism, to use Chesson’s terminology.

We close our discussion by commenting on the status of niche theory in a nonequilibrium
environment. Our framework assumes periodic dynamics. Nevertheless, we conjecture that the
underlying idea, the concept of temporal niche segregation, generalizes for all stationarily fluctuating
environments and ergodic situations as well, be it aperiodic stationary fluctuations or seasonally
forced chaotic dynamics. The crucial point is to have an “equilibrium” condition, which then can be
subjected to perturbation analysis. In the periodic case this happened to be the periodicity condition
7; = 0. For arbitrary stationarily fluctuating environments it is the condition that the long-term
average growth rate should be zero (Turelli 1978, Chesson 1994, Szilagyi and Meszéna 2010;
see Hofbauer and Schreiber 2010, Schreiber et al 2010 for the formal proof). On the other hand,
existence of a long-term environmental trend (i.e. departure from stationarity, as in the case of global
climate change) invalidates our approach in an essential way. Then, our formulation applies only as
an approximation. It could be a very good approximation, however. If a population survives for
a sufficiently long time 7, then the average growth rate In(n(7)/n(0))/T for that time period is
close to zero even if the initial and final densities n(0) and n(T') differ considerably. Therefore, the
existence of long-term environmental trends does not essentially invalidate niche theory. It remains
a null model: the real process can be seen as a perturbation of the presented theory.
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Appendix A: The Jacobian of the stroboscopic map

We want to obtain an expression for the derivative of the stroboscopic map I1; with respect to the
initial conditions x?. According to the definition of Eq. (13),

JIl; _ d,
i 39
8x(} 8x9 =T %)

with x;(¢) = @;(x{,...,xY, E, 1) being the flow induced by the right hand side of Eq. (1) with initial
conditions x¥. Now, let us calculate

2% ¢; d (d¢ d = dri(r) IR(1) dgr
= — = —G71; R geeey ,E, - ) 4
0t9xY  9x! < ot ) axgr( oale) a0 £:0 k; IR(1) Oxi (1) 0x] 0

~—

where summation or integration for all indices of R is understood. The equation we have ended up

with reads
d [ do; ari(t) OR(r) Iy
ot ( ) Z R(?) axk )3x9’ “1)

where the derivative of r; with respect to R and of R with respect to x;(¢) are evaluated at the flow
on the attractor. Since ¢;(0) = ? by definition, the initial condition to this equation is

d0;
8x(j)-

= &;j. (42)
t=0

Let us introduce some simplifying notation, with ®(r) being the derivative of the flow with
respect to the initial conditions, and a(z) being the time-dependent coefficient matrix multiplying
®(r) on the right hand side of Eq. (41):

20;
8x(])-

D(r) = (43)

and

a(t) = 5o ' (44)

Eq. (41) can then be rewritten as

=0 = afo)-2), (45)

with the initial condition translating to ®(0) = 1.

The solution to the matrix differential equation (45) is nontrivial as the matrices a(t;) and a(z,)
do not necessarily commute for ¢; # t,. To handle the problem, we first define the matrix Exp(a),
the exponential of the matrix a, by substituting a into the usual Taylor series of the exponential
function. Note that Exp(a(t;) +a(r2)) # Exp(a(t1)) - Exp(a(t2)) except when the matrices a(f;)
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and a(f;) commute. The solution of Eq. (45) can now be written as an infinite product of matrix
exponentials:

®(r) = lim Exp(a(t — Ar)At) - ... -Exp(a(At)Atr) - Exp(a(0)At)

At—0

0 (46)
=i E Ar) At
AII;HOT:NHI xp (a(TAr)At),

where N =t /At — oo. It is easy to show that this is indeed the solution: for an infinitesimally small
At, Eq. (45) can be written as

(14 A1) = D(t) +a(t)D(t)Ar = (1 +a(t)Ar)D(t) ~ Exp(a(t)Ar)P(1), 47)

and applying this formula recursively from # = 0 to the final moment yields Eq. (46).

Note that the matrices within the product in Eq. (46) are ordered according to decreasing time.
The expression can be made notationally more convenient by introducing the so-called time-ordering
operator 7. By definition this operator rearranges a product of matrices to decreasing order in time:

Ta)-ale) = Tale) ) = { 004 R0 (48)

a(l‘z) 'a(tl) ift, > 1.

This somewhat obscure but very useful notation, widely used in quantum field theory (see e.g.
Weinberg 1995, p. 143), allows us to write Eq. (46) in the simple form

t
®(r) = TExp ( / a(7) dr) . 49)
0
Substituting the definitions of ®(¢) and a(z) from Eqs. (43) and (44), this solution actually reads

10, t dri(t) IR(T)
8x(j)- = 9Exp< o IR(7) 9x,(7) dr> ) (50)

and, using Eq. (39), the final expression for the Jacobian of the stroboscopic map is

ot T 3r(1) IR(7)

Though the result looks elegant, remember that the time-ordering operator is simply a convenient
mnemotechnical symbol: its real content is expressed by the infinite matrix product in Eq. (46).
Appendix B: The criterion for robustness

Suppressing indices for better readability, Eq. (19) will read

dx*
dE

JoE’

_ (yﬁxp(A) - 5) (52)
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where x* and 7 stand for the vectors x} and 7;, respectively, A = [i a(t)dt with a(t) = S;(r) I;(t) as
introduced in Section 4, and § is the identity matrix.

Since the inverse of a matrix is proportional to the inverse of its determinant, and the determinant
will be near zero if any of the eigenvalues approach zero, the left hand side of the equation (the
response of the equilibrium densities) will become large, leading to the destabilization of the
equilibrium point, if any one eigenvalue of 7 Exp(A) — & approaches zero. Our intuition is that two
species having similar temporal niche vectors will lead to one of the eigenvalues being almost zero,
i.e. species that are too similar cannot coexist robustly.

First we prove that linear dependence of the temporal impact (sensitivity) niches makes the
matrix 7 Exp(A) — 0 degenarate, i.e. having an eigenvalue of 0. Linear dependence of the temporal
impact vectors means that there exists a time-independent L-dimensional vector @ = (o, 0, . .., 0y,)
such that Z?:] a;l;j(t) =0forall T € [0,T). Then, for all 7, & is a right eigenvector of the matrix
a;j(t) = Si(7)I;(7) with a corresponding eigenvalue of 0. Or, using Eq. (46), ¢ is a right eigenvector
of .7Exp(A) with an eigenvaue of 1. This means that .7 Exp(A) — 6 has an eigenvalue of 1 — 1 =0,
implying our proposition. The same argument applies for the sensitivities and the left eigenvectors.
Then, since eigenvalues and eigenvectors depend on the matrix elements continuously, similarity (i.e.
near linear dependence) of the temporal impact or sensitivity niches leads to having an eigenvalue
that is nearly zero, leading to non-robust coexistence.

Next, we will show that the product of the volumes spanned by the temporal niche vectors (¥5%1)
is still the proper measure of robustness: the system gradually loses its stability as this number gets
closer to zero. First we verify by direct calculation that the determinant of .7 Exp(A) is insensitive
to time-ordering. Using Eq. (46),

det.7Exp(A) = det Z7Exp (/()Ta(r) d‘L’>
= detAltigoExp(a(T —Ar)Ar) - ... Exp(a(At)Ar) - Exp(a(0)Ar)

= Altir%nOExp(Tra(T —Ar)Ar) - ... Exp(Tra(Atr)Ar) - Exp(Tra(0)Ar) (53)
= Exp (/()T Tra(t) dr) = Exp (Tr /OTa(T) dr) = det Exp (/OTa(T) dr)
=detExp(A),

where Tra denotes the trace of the matrix a.

Note that these results imply that the determinant of 7 Exp(A) — & will become zero precisely
when detA does so. Indeed, what we have is just a trivial rescaling of A, an artefact of the conversion
between discrete and continuous dynamics (in Eq. (19) the equilibrium densities x; are quantities
of the discrete dynamics, whilst everything else is derived from the continuous equations). So we
may disregard this trivial rescaling and simply use detA as the measure of robustness. Furthermore,
the inequality of Eq. (10) can be applied to the matrix A to yield |detA| < #§7%1, demonstrating
that community robustness can be measured exactly like in the equilibium case, provided that we
think of the full set of regulating factors as containing every regulating factor at every moment
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within the cycle as a separate factor. This also means that all the hassle of matrix exponentials and
time-ordered products may be completely ignored when applying the formalism to specific models:
all that matter are the temporal sensitivity and impact vectors and the volumes they span.

Appendix C: Model analysis using Chesson’s (1994) framework

In this subsection we perform the analysis of the model defined by Eq. (27) in Section 5 using
Chesson’s formalism. For this model, Chesson’s environmental and competition parameters can be
chosen as

E; = cos(ot + ¢;) (54)

and
Cj=n|+ny, (55)

respectively. Note that E; = 0 and that the competition parameter C; is the same for the two species.
Chesson’s theory applies for small fluctuations; this assumption can be implemented by choosing
the parameters 7, and K, small.

With this parametrization, the instantaneous growth rate r; = g; (E;(t),C;(t)) of the model is

_p, 1o G
8 (E0).C(0) = py1 ) (1~ s
~py (1 1)) = 2L (14 (re = K )G (56)
C; of
=pj ( - KJ> +pjreEj— ;;(re —K)EC;,

where ~ means the small fluctuation approximation. The natural reference points are £ = 0 and
Cj = xj, for which g j(Ej,C}‘) = 0 is satisfied, as required. Then the standardized parameters of
Chesson are

& = g;(Ej,C}) = p;KE; (57
and
" G
Cj=—8)(Ej.Ci)=—pj{1--" ] (58)
J
Using these notations, the growth rate is
rj = &j =€+ Y6}, (59)
where K
Vo —
¥ =— ‘;{ ¢ (60)
ePj

is the measure of nonadditivity. Note that since r, was greater than K, in our simulations, the y; are
negative, i.e. we have a subadditive situation.

23



Since the competition parameter C is a linear function of the competitive factors (the two
densities in this case), this model does not produce relative nonlinearity. However, there is storage
effect. Chesson’s formula for the storage effect reads

Al = %(galcé_l - an%grcgr_ia (61)

where the overline denotes time-averaging, i is the invader index, r is the resident, the —i superscript
means that the given quantity is to be evaluated with species i at zero density and all other species at
their equilibria, and

%
9%
are factors introduced into the theory so that all linear terms in the final expression for the coexistence-
affecting mechanisms cancel (this does not play a great role in our case, but becomes crucial if the
competitive factors are nonlinear functions of the densities, i.e. if relative nonlinearity is operating).
Let us calculate A/ in our model. The standardized competition parameter, as given by Eq. (58), is

Gir (62)

¢ = &(”r‘i‘ni)_l)j (63)

J

(j is a general species index which may refer to the resident or the invader), and so

' =~ p. (64)
J
The differential of this expression is
d%jf" =d (pJnr - Pj> = %dnr, (65)
J J
therefore ‘
It _ pik
- — . 66
Gir T o (66)
Let us work a little more on the expression éaj%_i , using the fact that &; = p;K.E;:
. iPrK,
&6 = piKEE (n,— 1) = PP B 67)
Kk Kk
(the second term is zero, since E; = 0). Substituting all of this into Eq. (61) we get
— —  K,—r, p?K, pik- K, — o p?K,
Al = %E6 — gV 66" = —="FEmn, — " —FE
%ioit; dirYroror K.pi K; iftr prki Kepr K rir
K, — K. — Ko—rp —  —
= P Em, — = Eyn, = p;=—* (Ein, ~ En,) (68)

i i i

= &:(re -K.) (COV(Erl’lr) — COV(Einr))7

Ki
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where we used Eq. (60) to evaluate ¥,. As mentioned before, r, — K, is positive, and so is
Cov(E,n,) — Cov(E;n,), because the resident obviously correlates more strongly with its own
E than with the E of the other species. It follows that A/ > 0 and so we have the storage effect.

Appendix D: An alternative form of the niche vectors

A continuous periodic system can be converted into a discrete one with a fixed point, as is done
by Eq. (15), to which the whole body of theory discussed in Section 3 directly applies. The most
straightforward way of extending our theory to fluctuating situations would have been to derive the
sensitivity and impact vectors in the same manner as was done in Section 3, taking into account
that the growth rates are actually the cumulative growths of each population during the time interval
[0,T) — which are all zero, as they should be. Though it is somewhat quicker to obtain the results
this way, their interpretation is more difficult; hence the longer route we have taken. Nevertheless, it
will be instructive to see the forms of the sensitivity and impact vectors obtained by applying the
equilibrium theory to the cumulative growth rates. In other words, we want to construct the “P-level”
(Point equilibrium-level) niche vectors, the ones we obtain without “looking into” the within-period
dynamics, and see what their relationship is to the C-level (Cycle-level) niche vectors (the ones we
have already derived).

To establish the P-level niche vectors, we first need to consider the cumulative growth of each
population over one period:

fi[R]—/O‘TI”I'(R(xl(Z),...,XL(Z>),E,l)d’L', (69)

which is thus a functional of the vector of regulating factors. Now, looking at Eq. (15) shows that the
evaluation of d7;/ 8x9 will yield the P-level niche vectors. Applying the chain rule, the sensitivity
will be defined by the functional derivative

5]7,' 8rl-(r)
SR(t)  OR(7)

S () = =Si(1), (70)

that is, the P-level sensitivity is exactly the same as the C-level one. The P-level impact is somewhat
more involved:

) Ay (T L Ton (') IR(T)
=" Zaxk 90 Z ©)7Exp (/ aR(T’)axj(T’)dT>

) J k= (71)
= ];Ik(r)yExp </0 Sk(T/)Ij(T/)dT/> ;

where the time-ordered exponential expression for the derivative of the flow is derived in Appendix
A. Observe that the P-level impacts are different from but still composed of the C-level niche vectors.

25



With the P-level niche vectors, the matrix A;; becomes expressible as

ar, P p R(7)
/ ST (t)I( 5R x? dt

_Z/s it yExp</ Si(t )dr

the scalar product of the P-level sensitivities and impacts for all regulating factors and time. This
way we have established the relationship between the P-level and the more convenient C-level
description.

(72)
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