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Abstract

Sensitivity analysis, the study of how ecological variables of interest respond to changes in
external conditions, is a theoretically well-developed and widely applied approach in population
ecology. Though the application of sensitivity analysis to predicting the response of species-rich
communities to disturbances also has a long history, derivation of a mathematical framework for
understanding the factors leading to robust coexistence has only been a recent undertaking. Here
we suggest that this new development opens up a new perspective, providing advances ranging
from the applied to the theoretical. First, it yields a framework to be applied in specific cases
for assessing the extinction risk of community modules in the face of environmental change.
Second, it can be used to determine trait combinations allowing for coexistence that is robust
to environmental variation, and limits to diversity in the presence of environmental variation,
for specific community types. Third, it offers general insights into the nature of communities
that are robust to environmental variation. We apply recent community-level extensions of
mathematical sensitivity analysis to example models for illustration. We discuss the advantages
and limitations of the method, and some of the empirical questions the theoretical framework
could help answer.
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1 Introduction

A key approach to understanding the processes shaping communities in nature is to consider them
in the context of the conditions needed for long-term species coexistence. Most often considered is
when coexistence of a set of species is dynamically stable, meaning that small perturbations of the
population densities are damped and the system returns to some attractor (Armstrong & McGehee
1980). Similar, useful dynamical concepts include resilience and reactivity (Neubert & Caswell
1997), which quantify the rate of return to equilibrium and the initial amplification of perturbations,
respectively.

Here we focus instead on the property of robustness of coexistence (Abrams 2001, Meszéna et al.
2006). Robustness refers to the response of a system’s equilibrium state to altering model parameters:
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if the equilibrium state does not change much even for relatively large parameter perturbations, the
system is robust, otherwise it is unrobust. Note that “equilibrium states” may include fixed points,
limit cycles, or any other long-term behavior. Robustness takes a different focus than stability and
related concepts mentioned above. It considers the response of variables (e.g. population densities)
to changes in parameters (intrinsic death rates, predator conversion efficiencies, etc.) governing
the system, rather than the response of variables to perturbations of the variables themselves with
parameters fixed.

Within population ecology, the study of robustness has had a long and distinguished history,
though the approach is better known as sensitivity analysis (Caswell 2001, chapter 9). Sensitivity
analysis focuses on how a variable of interest (such as population growth rate or density) is expected
to change in response to parameter perturbations. Sensitivity and robustness express the same
information, but are inversely related: a population growth rate or density is sensitive to parameter
changes if it is not robust to them, and vice versa. Sensitivity analysis in population ecology has
led to deep insights both in an applied context, for population viability analyses, conservation, and
management (Crouse et al. 1987, Hochberg et al. 1992, Silvertown et al. 1993, Noon & McKelvey
1996, Seamans et al. 1999, Fujiwara & Caswell 2001, Hunter et al. 2010), and in a theoretical
context, especially in life history theory (Hamilton 1966, Charlesworth & Leon 1976, Michod 1979,
Caswell 1982, 1984, Gleeson 1984, Pásztor et al. 1996, Caswell 2011).

The application of sensitivity analysis to communities also began early, with several different
approaches emerging. First, the concept of robust coexistence and coexistence region (bandwidth)
was introduced by Armstrong (1976) as the range of parameters allowing for stable coexistence
(see also Vandermeer 1975). Abrams and co-workers later followed up with this perspective, using
simulations to determine coexistence regions in various resource consumption (Abrams 1984) and
predator-prey (Abrams et al. 2003) models, including competition and resource fluctuations (Abrams
& Holt 2002, Abrams 2004), and mutualistic interactions (Abrams & Nakajima 2007).

In a parallel development, Levins (1974) introduced loop analysis to predict the effects of small
perturbations of model parameters on the equilibrium state of large communities characterized only
by the sign structure of the interactions between its members. Bender et al. (1984) established
the use of the inverse community matrix (Levins 1968, May 1973) in calculating the sensitivity
of equilibrium population sizes to press perturbations of abundances (corresponding to a constant
rate of influx/outflow of individuals in time). Several studies have built on this approach (Yodzis
1988, 2000, Dambacher et al. 2002, Novak et al. 2011), finding very high sensitivities to press
perturbations in large ecological systems, hampering predictability due to imperfect knowledge of
parameters. Using the technique of generalized modeling (Yeakel et al. 2011), Aufderheide et al.
(2013) developed a numerical method for estimating the importance of each species in a community
and thus identifying parameters the community is especially sensitive to.

Recently, the influence of the presence or absence of species on communities has also been
explored (community viability analysis; Ebenman & Jonsson 2005), which specifically considers
the sensitivity of community composition to species removal in terms of the number of resulting
secondary extinctions (Ebenman et al. 2004, Allesina & Pascual 2009). Finally, the study of the
sensitivity of model predictions to altering the form of their ingredient functions has also been an
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important approach—for instance, the effect of replacing the Holling type-II functional response
with an Ivlev function in predator-prey models (Gross et al. 2009, Cordoleani et al. 2011, Adamson
& Morozov 2012).

Despite this lively area of research over a number of decades, a mathematical framework for
understanding the factors resulting in robust coexistence did not emerge, until recently. In relation
to the problem of competitive exclusion and limiting similarity, Meszéna et al. (2006) presented a
new approach for studying the robustness of coexistence and offered a theoretical framework for
the construction of community-wide sensitivity formulas which explicitly quantify the response of
population abundances to perturbations of arbitrary model parameters. Recently, a series of such
formulas have been worked out for nonequilibrium communities and communities of structured
populations within this framework (Szilágyi & Meszéna 2009a,b, 2010, Barabás et al. 2012a,b,
2013, Barabás & Ostling 2013, Barabás et al. 2014).

Here we suggest that this new mathematical framework opens up a perspective providing both
applied and theoretical advances. Our dual purpose is to show how one can use the framework
in practice, and to demonstrate these advances and the emerging insights by applying it to model
examples. In particular, we suggest the framework provides: 1) a mathematical framework for
assessing the extinction risk of interacting populations in the face of environmental perturbations; 2)
a tool for determining expected trait distribution in and limits to the diversity of specific community
types; and 3) general insights into the nature of robust communities.

This article is structured as follows. First we provide a guide to the mathematical framework
of calculating sensitivities of stationary abundances to parameter perturbations, and demonstrate
its use on a simple pedagogical example. We then go on to discuss three further examples, each
significantly more complicated than the previous toy model. These both demonstrate the power of
the framework to handle a variety of complex dynamics (including nonequilibrium behavior and
population structure), and illustrate its use for assessing extinction risk and as a tool for determining
expected trait diversity and limits to similarity. Next, we point out some of the generalities that
emerge from the framework. Irrespective of model details or the particular mechanisms maintaining
diversity, a biologically easily interpretable geometric picture emerges for describing community
robustness. It can be used to draw general conclusions about the coexistence of similar species:
beyond some level of similarity, coexistence gets more sensitive as species get more similar. We
close by pointing out limitations of the framework, and outlining some of the empirical questions
we believe its use could help answer.

2 Community-wide sensitivity analysis of population abundance: a
field guide

We start out from a general model of S interacting species:

1
Ni

dNi

dt
= ri

(Rµ (N j, t) ,E, t
)

(i = 1 . . .S), (1)
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where Ni is the density of species i, and ri is its per capita growth rate—the “species fitness” of
Chesson (2000)—which is a function of:

• t, time. Any variability in the external environment (the vagaries of the weather) will result in
an explicit time dependence of the ri.

• E, the collection of model parameters. Parameters are characteristics of the system governing
species dynamics: they may include environmental variables (like temperature), heritable
traits (bill depth in birds), or phenomenological characteristics possibly containing the effects
of both (intrinsic death rates). We use the convention that parameters are never time-dependent.
For instance, if the community is subjected to regularly oscillating weather described by
acos(ωt), then E will include the amplitude a and the frequency ω , but the time dependence
will be treated as an explicit dependence of the ri on t.

• R, the collection of variables mediating density-dependent effects—which are therefore
functions of the species abundances N j. Rµ refers to the µth component of this vector.
We call Rµ the regulating factors (Levin 1970, Meszéna et al. 2006); Rµ measures the
quantity/concentration of the µ th factor. Regulating factors may include resources, predators,
pathogens, refuge availability, or any other thing involved in the feedback between population
densities and growth rates. The important point is that all interactions in the community have
to be mediated by the Rµ . See Box 1 for a more in-depth look at regulating factors.

Let us assume Eq. (1) has a fixed point. Our central question is how the position of this fixed
point is expected to change in phase space after perturbing the parameters E. At equilibrium all
growth rates are zero: ri

(Rµ (N j(E)) ,E
)
= 0. Since these equations are inherently nonlinear, there

is no general way of solving them for the equilibrium densities Ni(E). It is however possible to
determine the response of the fixed point to small perturbations of E via linearization. This formula
reads

σi =−
S

∑
j=1

a−1
i j z j (2)

(Meszéna et al. 2006). Here σi is the sensitivity of the equilibrium abundance of species i to
perturbations of the parameter E, the community matrix ai j describes species interactions, a−1

i j refers
to the (i, j)th entry of the inverse of this matrix (and not to the inverse of the (i, j)th entry), and z j

gives the response of species j’s growth rate to E:

σi =
dNi

dE
, ai j = ∑

µ

∂ ri

∂Rµ

∂Rµ

∂N j
, z j =

∂ r j

∂E
, (3)

where all quantities are evaluated at the unperturbed equilibrium. Here E refers to a single model
parameter (it is therefore a scalar); Ni, σi, z j, and r j are the ith ( jth) entries of vectors of length
S; Rµ is the µth entry of a vector whose length is the number of regulating factors; and ai j is the
(i, j)th entry of an S×S matrix.
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Box 1: Regulating factors

In this work we stick to the convention that all interactions between individuals within the
community are parametrized via regulating factors. The two major groups of regulating factors
are resources and natural enemies, as these not only influence population growth but are also
affected by them. Population regulation may arise from direct or indirect interactions between
individuals. For instance, if the frequency of density-dependent aggressive interactions depends
on the average level of stress hormones in individuals, then its distribution within the population
may function as a regulating factor. Also, regulating factors may be spatiotemporally structured.
If two bird species are regulated by the number of available nesting sites and use the exact same
sites but in alternative seasons, then we have effectively two separate factors. Similarly, the
same type of resource in different spatial locations may function to regulate two populations
independently, becoming two factors instead of one.

The concept of regulating factors might appear confusing at first because, importantly, there
is no unique way of choosing them. As long as all interactions are mediated by some set of
regulating factors, the choice is valid. A simple procedure to see if indeed all feedbacks have
been considered is this: 1) pretend that all potential regulating factors have fixed values that
do not change; 2) check if now each species in the community is undergoing simple density-
independent exponential growth/decline. Fixing the quantities of the regulating factors amounts
to lifting the burden of the checks and balances of nature from the species: food always gets
replenished, predators and parasites are kept at bay. In fact, ever since the influential studies
of Birch (1953), such removal of the feedbacks between population densities and growth rates
has been the standard practice in experimental studies determining species’ tolerance curves to
environmental factors (such as temperature or pH).

Importantly, the final sensitivities do not depend on the particular choice of regulating
factors. The impact and sensitivity vectors do change, but the generalized community matrix
ai j is unaffected, as can be seen from any of the equations in Box 3.

What strategy should one follow in choosing the regulating factors for specific models?
There are always two “trivial” choices to go by that always work: 1) choose the population
densities themselves; 2) choose the per capita growth rates. The first choice makes the impact
vectors trivial, the second makes the sensitivity vectors trivial, putting all the complications in
the other vector (see Section 2). In implicit, phenomenological models where the underlying
mechanisms are not considered (e.g., Lotka–Volterra models), often this is the only way to go.
In this case, nothing is really gained by using regulating factors.

Often however, and especially in more mechanistic, process-based models, it is better to
include other regulating variables and consider the impact and sensitivity vectors separately.
To take a very simple example, consider piscivorous fish which will consume any species of
prey as long as the prey’s body size falls within some given range. Let us also assume that
none of the prey exhibit any behavioral patterns that would differentiate them in the eyes of the
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predator. How should we choose the regulating variables? One could go by the obvious choice
of assigning all prey population densities as separate regulating factors and end up with a very
complicated model. However, if we realize that from the point of view of the predators all prey
species are the same, we can make the (weighted) sum of all prey densities a single regulating
factor, thus reducing the number of variables and simplifying the problem considerably.

In fact, it is a good general principle to try finding the minimal set of regulating factors for
any problem. Not only does this reduce the number of variables, it also constrains the maximum
number of robustly coexisting species, which cannot exceed the number of regulating factors
(see Sections 2 and 5.1).

In summary, there is no “right” way of choosing regulating factors, only more or less
useful ways of doing so. As long as all feedbacks between growth rates and densities are taken
into account, the formalism will work. At worst, nothing is gained; at best, one can analyze
models via a good choice of regulating factors that otherwise would be impossible to treat. See
Section 4.3 (and the corresponding section in the Supporting Information) for an example where
choosing regulating factors well makes the difference in whether the model can be analyzed.

Note that Eq. (2) is interpreted differently from the classic, Lotka–Volterra-based formulation of
the Levins school (Levins 1974, Yodzis 1988, Dambacher et al. 2002, Novak et al. 2011): we use
the per capita instead of the total population growth rates to calculate ai j, and since all interactions
between individuals are mediated through the regulating factors, we assume an explicit formulation
of the model in question. Though using a slightly different approach and notation, this formula was
also derived by Verdy & Caswell (2008, Eqs. 29, 30).

The determinant of ai j is the key measure of community robustness against parameter per-
turbations: small/large values of det(ai j) imply low/high robustness (high/low sensitivity). For
a set of species coexisting at a stable fixed point, small det(ai j) implies that the position of the
point undergoes large shifts even for small changes in E, possibly moving it out of the all-positive
region of phase space, causing extinctions. See Box 2 for more details on the relationship between
sensitivity, dynamical stability, and det(ai j).

In contrast to earlier approaches to sensitivity analysis in the community context, Meszéna et al.
(2006) connected det(ai j) to quantities that are both generally defined and biologically meaningful:

• The effect of species j’s density on the µth regulating factor. This is the impact vector I j,µ .

• The effect of the µ th regulating factor on species i’s growth rate. This is the sensitivity vector1

Si,µ .

1There is an unfortunate clash of terminology here: the “sensitivity vector” has nothing to do with sensitivities as
in the response of variables to parameter perturbations. To avoid confusion, we will consistently refer to Si,µ as the
“sensitivity vector”.
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A: Isoclines and equilibria of a two-species system
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B: Isoclines and equilibria with perturbations

Figure 1: The relationship between stability and sensitivity. Panel A shows the isoclines of a hypothetical
two-species community. Stable/unstable fixed points are denoted by black/white circles. Notice that near the
rightmost equilibrium the two isoclines are almost parallel, implying weak stability. On panel B some model
parameters are allowed to vary slightly, making the isoclines’ positions fuzzy. These “isobands” do not cross
at a single point, but at a region (darkly shaded areas). The equilibria may be anywhere within these regions.
It is apparent that the first two equilibria have reasonably well-defined positions (they are robust), but the
rightmost equilibrium’s position is highly indeterminate, and is even touching the N1-axis, where species 2 is
extinct (unrobust equilibrium).

At a fixed point, these vectors are given by

I j,µ =
∂Rµ

∂N j
, Si,µ =

∂ ri

∂Rµ
. (4)

Let us now consider not these vectors by themselves, but the volumes they span,VI andVS.
The “impact volume”VI means the following. Take the impact vectors of all S species. Each vector
has as many components as the number of regulating factors. Starting from the origin, we draw
each impact vector and consider them to be the basal edges of a parallelotope (an “S-dimensional
parallelogram”). The volume of this parallelotope in S dimensions is what we mean byVI. The
definition forVS is completely analogous, but with the sensitivity vectors spanning the parallelotope
instead (Fig. 2A). See the Supporting Information (SI) for a simple and general recipe for calculating
such volumes.

These volumes provide general measures of ecological similarity. Their generality is a conse-
quence of the fact that the impact and sensitivity vectors are well-defined for arbitrary ecological
situations via Eq. (4). Their role in measuring ecological similarity becomes clear when we con-
sider that 1) they characterize the way species relate to their environments; 2) small volumes are
a consequence of having species with very similar vectors, i.e., vectors with large overlap. In
analogy with classical theory, where the overlap between resource utilization functions determined
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interaction coefficients (MacArthur & Levins 1967), the volumes are a measure of the aggregate
overlap between several species (Fig. 2).

Box 2: Sensitivity and dynamical stability

Fig. 1 illustrates the basic idea behind the community-wide sensitivity analysis of coex-
istence and its relationship with conventional dynamical stability. Panel A shows the phase
space of a two-species community. The isoclines of the two species are shown; stable/unstable
equilibria are indicated by black/white circles (we ignore the “trivial” unstable equilibrium at
the origin where both species are absent).

Panel B shows what happens when certain model parameters are slightly altered. In response
to the perturbations, the isoclines’ positions change. The two thick bands represent the possible
positions of the isoclines after all possible (small) parameter perturbations, which is relevant
because in nature parameters are expected to be continuously perturbed by extrinsic factors.
The width of these “isobands” is not uniform: there is no reason to expect model parameters
to influence all parts of the isoclines equally. Importantly, the equilibria now cease to have
well-defined locations: they may be anywhere within the area where the “isobands” cross
(shaded regions of overlap). It is apparent that the positions of the two equilibria to the left are
not very sensitive to parameter perturbations. On the other hand, the rightmost equilibrium may
be located in a much wider region—and, since this region touches the horizontal axis, certain
parameter changes may even result in the extinction of the second species. The size of the
shaded area measures the sensitivity (robustness) of the equilibrium to parameter perturbations,
with the two terms inversely related: a sensitive equilibrium (large area of overlap) is unrobust,
while an insensitive one (small overlap) is robust.

Note that it makes perfect sense to measure the sensitivity of the unstable equilibrium
(which in this case is quite robust). Sensitivity and stability are therefore separate properties:
stability/instability means that small perturbations of the densities will decay/amplify, while
sensitivity measures how much the position of the equilibrium changes in phase space after
small perturbations of the parameters—regardless of whether the equilibrium is stable or not.
Though an unstable equilibrium does not describe coexistence per se, its sensitivity may still
provide useful information about the system. For instance, in classic predator-prey models an
unstable equilibrium is often surrounded by a stable limit cycle. If the unstable equilibrium
point is sensitive enough that it may actually cross one of the coordinate axes, then so will the
cycle, meaning that the species are at risk of extinction.

Observe on Fig. 1 that the isoclines at the rightmost equilibrium point intersect at a very
small angle. It is known (Kuznetsov 2004) that the smaller the angle of intersection, the smaller
the Jacobian’s determinant at the equilibrium; in the limit of tangentially touching isoclines, the
determinant is zero. Since the determinant is the product of the eigenvalues, such an equilibrium
must have at least one eigenvalue very close to zero, signaling weak stability/instability. These
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weakly stable/unstable equilibria are also the most sensitive to parameter perturbations, because
near-parallel isoclines mean that even a slight thickening of the isoclines into “isobands” will
create large areas of overlap, as seen on Fig. 1. Conversely, strongly stable/unstable equilibria
are robust to parameter perturbations. Note that this is only a tendency: if the isoclines do
not thicken appreciably after perturbation, then even near-parallel isoclines will not translate
into high sensitivity. For instance, the angle of intersection for the unstable equilibrium in the
middle is not particularly high, and yet it is quite robust because the thickness of the isobands is
very small near that point. Eq. (2) formalizes this intuitive relationship between stability and
sensitivity, and extends it to an arbitrary number of species: ai j measures the angle between
isoclines, and z j measures the “thickening” of the isoclines into isobands near the equilibrium
point.

Finally, note that for simplicity we have considered fixed point equilibria of unstructured
populations, but the exact same conclusions turn out to be valid for limit cycles and/or structured
populations (Box 3). Though for these more complicated scenarios the matrix ai j in Eq. (2)
cannot be interpreted as a simple Jacobian anymore, the result that a small det(ai j) signals an
oversensitive system still holds, irrespective of model details.

Armed with these concepts, it turns out the determinant of ai j may always be approximated as
∣∣det(ai j)

∣∣≤VIVS (5)

(Meszéna et al. 2006). In words, the product of the volumes spanned by the impact and sensitivity
vectors puts an upper bound on the magnitude of ai j’s determinant. This implies that whenever
VIVS is small, all other things being equal, robustness will also be small. Knowing these volumes
therefore opens up a possible shortcut to exploring community robustness, a property we will use in
Sections 4.2 and 4.3.

So far we have only discussed the sensitivity analysis of fixed point equilibria in continuous time,
for communities of unstructured populations. However, the same methodology may be extended to
more complex dynamical states, like limit cycles (Barabás et al. 2012a, Barabás & Ostling 2013) or
aperiodic stationary oscillations (Szilágyi & Meszéna 2010), both in discrete and continuous time.
One may also consider communities where the species have complex life cycles, requiring structured
population models (Szilágyi & Meszéna 2009a, Barabás et al. 2014). All this extra complexity can
be incorporated into the framework described above. Importantly, though the particular expressions
for σi, ai j, and z j do change, the general form of the sensitivity formulas, Eqs. (2) and (5), remain
the same for all these scenarios, revealing a unified structure underneath all such calculations.
Importantly, impact and sensitivity vectors can be identified in each. Box 3 summarizes these
formulas and gives the proper interpretation of Eq. (2) when various complexities are incorporated.
Due to this common structure, we refer to ai j as the “generalized community matrix”, which reduces
to the classical community matrix for point equilibria of unstructured communities, but may also
account for additional complexities such as temporal fluctuations and population structure.
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Figure 2: The volume spanned by the impact vectors of two interacting species. Let us assume there are
three regulating factors in the system. We draw the two impact vectors I1,µ and I2,µ in the space whose axes
correspond to the regulating factors (but what is actually measured along these axes is the impact on the given
regulating factor). Since there are two species, we are interested in the two-dimensional volume (area) these
vectors span (gray parallelograms). Panel A: the area spanned by the two impact vectors is large, indicating
robust coexistence. Panel B: the angle between the two impact vectors is small, resulting in a much smaller
area and thus reduced robustness.

3 A simple example

This section first discusses all necessary steps required to perform the community-wide sensitivity
analysis of stationary abundances to parameter perturbations, and then applies this procedure to a
very simple pedagogical example. The list of steps are as follows.

• Step 0: Determine whether the model is in discrete or continuous time, whether the popu-
lations are structured, and what type of equilibrium (fixed point, limit cycle, . . . ) is under
consideration.

• Step 1: Designate the regulating factors.
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• Step 2: Based on Step 0, look up the necessary formulas in Box 3 and calculate the impact
and sensitivity vectors of each species.

• Step 3: Calculate the volumesVI andVS. A small productVIVS signals an oversensitive
system. For more precise quantitative estimates, move on to Step 4.

• Step 4: Calculate ai j using the appropriate formula.

• Step 5: Pick an arbitrary model parameter E of interest and obtain the vector z j.

• Step 6: Calculate the sensitivities from the general equation Eq. (2).

The toy example we look at here is a simple consumer-resource model with two species and two
noninteracting abiotic resources. The dynamics of the consumers is given by

ri =
1
Ni

dNi

dt
= bi1G1 +bi2G2−mi, (6)

where ri, Ni, and mi are the per capita growth rate, population density, and mortality rate of species
i, respectively; Gµ represents the available concentration of resource µ; and biµ is the amount of
population growth species i can achieve on one unit of resource µ . The resource dynamics is in turn
given by

dGµ

dt
= kµ

(
Dµ −Gµ

)
− cµ1N1− cµ2N2, (7)

where Dµ , kµ , and cµi are respectively the saturation concentration, turnover rate, and species i’s per
capita consumption rate of resource µ . We assume kµ = 1.

Let us designate specific values for the entries of biµ and cµi:

biµ =

(
1 0
0 1

)
, cµi =

(
1 ρ
ρ 1

)
. (8)

The above choice for biµ means each consumer can achieve population growth on only one of the
resources. They might still consume the indigestible resource: this cross-consumption is measured
by the parameter ρ .

Let us now perform the steps of the analysis outlined above.
Step 0. We know (Tilman 1982) that this type of consumer-resource model has a fixed point

equilibrium. We can solve for this equilibrium: due to dGµ/dt = 0 the resources satisfy

Gµ = Dµ − cµ1N1− cµ2N2 (9)

(we used kµ = 1), and the equilibrium densities are calculated from Eq. (6) by setting ri = 0 and
using Eqs. (8) and (9):

N1 =
D1−ρD2

1−ρ2 , N2 =
D2−ρD1

1−ρ2 . (10)
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Here we introduced the quantities Di = Di−mi. Note that mi is the threshold value for Di above
which the ith consumer can survive in monoculture; Di denotes the excess above this minimum.
These expressions are singular when ρ = 1, yielding meaningful equilibrium densities only when
D1 is exactly equal to D2.

For ρ < 1 the conditions for N1,N2 > 0 read

D1 > ρD2, D2 > ρD1, (11)

or
ρD1 < D2 <

1
ρ

D1. (12)

These can only be simultaneously satisfied for 0 < ρ < 1. Observe that, for D1 fixed, the range of
values of D2 allowing for coexistence shrinks with increasing ρ (Fig. 3A). One could also derive
a similar condition for positive equilibrium densities when ρ > 1; however, these solutions are
dynamically unstable and therefore of no interest to us.
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Figure 3: Coexistence regions and sensitivities in the toy model of Section 3. Panel A: coexistence region
for the parameter D2 as a function of ρ , based on Eq. (12). The value of D1 is fixed at 1 (dashed line).
The shaded area represents the D2 values allowing for coexistence. Notice that this region shrinks to a
point at ρ = 1: here coexistence is only possible by fine-tuning D2 to be exactly equal to D1. Panel B:
sensitivities of species 1 (solid curve) and 2 (dashed curve) to perturbing D2, given by Eq. (23); units are
[abundance/resource concentration]. The curves diverge to minus/plus infinity as ρ → 1, signaling that an
arbitrarily small perturbation could knock the species to extinction—in line with the result on panel A.

In this model we have the benefit of knowing the precise dependence of the equilibrium densities
on the parameters via Eq. (10), therefore sensitivity analysis is, strictly speaking, not even necessary.
However, our purpose here is to show how the method works in an example where we can compare
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the results with the exact solution. The same procedure will then work for problems where we
cannot solve for the equilibrium state explicitly—see Section 4 for particular examples.

The model is at a fixed point in continuous time, and the populations are unstructured. Therefore
the ingredients needed for the analysis are given by Eq. (33) in Box 3:

σi =
dNi

dE
, ai j = ∑

µ

∂ ri

∂Rµ︸︷︷︸
Si,µ

∂Rµ

∂N j︸︷︷︸
I j,µ

, z j =
∂ r j

∂E
. (13)

Step 1. We choose the regulating factors for Eq. (6). Remember that the only criterion for this
choice is that the regulating variables have to mediate all density-dependent interactions (see Box 1).
Here we go with Rµ = Gµ .

Step 2. Calculate the impact and sensitivity vectors of each species based on the definitions in
Eq. (13):

I j,µ =
∂Rµ

∂N j
=

∂
∂N j

(
Dµ − cµ1N1− cµ2N2

)
=−cµ j, (14)

Si,µ =
∂ ri

∂Rµ
=

∂
∂Rµ

(
bi1R1 +bi2R2−mi

)
= biµ . (15)

Observe, using Eq. (8), that the sensitivity vectors of the two species, (1, 0) and (0, 1), are markedly
different. In contrast, the impact vectors (−1, −ρ) and (−ρ, −1) are identical for ρ = 1 and
become increasingly different as ρ departs from the value 1.

We could also calculate these vectors for different choices of the regulating variables. As
mentioned in Box 1, different choices of the regulating factors can change the impact and sensitivity
vectors, but will leave ai j unchanged. For instance, we could make the resource depletion levels
the regulating factors instead of the resources themselves: R̂µ = ∑i cµiNi = Dµ −Gµ (the hat
distinguishing this alternative choice from our original one). Expressing the growth rates ri as
functions of these factors:

ri = bi1
(
D1− R̂1

)
+bi2

(
D2− R̂2

)
−mi. (16)

We can now calculate the alternative vectors:

Î j,µ =
∂ R̂µ

∂N j
=

∂
∂N j

(
cµ1N1 + cµ2N2

)
= cµ j, (17)

Ŝi,µ =
∂ ri

∂ R̂µ
=

∂
∂ R̂µ

(
bi1
(
D1− R̂1

)
+bi2

(
D2− R̂2

)
−mi

)
=−biµ . (18)

This alternative choice reverses the direction of the impact and sensitivity vectors.
Step 3. We calculate the volumesVI andVS, which carry valuable information on robustness

(Section 2). In our case, as I j,µ and Si,µ happen to form square matrices, the volume is given by
the absolute values of their determinants (see the Supporting Information):

VI =
∣∣det

(
−cµ j

)∣∣=
∣∣∣∣det

(
−1 −ρ
−ρ −1

)∣∣∣∣= 1−ρ2, VS =
∣∣det

(
biµ
)∣∣=

∣∣∣∣det
(

1 0
0 1

)∣∣∣∣= 1. (19)
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Using Eq. (5),VIVS = 1−ρ2, so without any further calculations we know that coexistence will
get more and more sensitive to parameter perturbations as ρ approaches 1. At the point where ρ is
precisely equal to 1,VIVS = 0 and coexistence has infinite sensitivity (zero robustness). This is
consistent with Eq. (12) and Fig. 3A: the parameter region allowing for coexistence shrinks with
increasing ρ , and at ρ = 1 becomes a single point.

Step 4. We calculate the matrix ai j from Eq. (13):

ai j =
2

∑
µ=1

∂ ri

∂Rµ

∂Rµ

∂N j
=

2

∑
µ=1
Si,µI j,µ =−

2

∑
µ=1

biµcµ j =−
(

1 0
0 1

)(
1 ρ
ρ 1

)
=

(
−1 −ρ
−ρ −1

)
. (20)

We get the exact same result using R̂µ , or any other choice of the regulating factors. Since ai j

depends on Rµ only through the chain rule, this dependence must ultimately cancel from the final
expression.

Step 5. We pick a model parameter E. Let us choose E = D2: we are interested in the
consequences of increasing the excess resource supply for Species 2 while keeping it constant for
Species 1. Since the original equations are expressed in terms of Di instead of Di, we rewrite the
growth rates at equilibrium as functions of Di = Di−mi. Substituting Eq. (9) into Eq. (6):

0 = r j =
2

∑
k=1

b jkDk−m j−
2

∑
µ=1

2

∑
k=1

b jµcµkNk =
2

∑
k=1

b jkDk+
2

∑
k=1

b jkmk−m j−
2

∑
µ=1

2

∑
k=1

b jµcµkNk, (21)

and now we can calculate z j:

z j =
∂ r j

∂D2
=

∂
∂D2

(
2

∑
k=1

b jkDk +
2

∑
k=1

b jkmk−m j−
2

∑
µ=1

2

∑
k=1

b jµcµkNk

)
= b j2 =

(
0
1

)
. (22)

Step 6. Determine the sensitivities σi of the equilibrium abundances to perturbing D2 using the
general formula Eq. (2):

σi =
dNi

dD2
=−

S

∑
j=1

a−1
i j z j =−

(
−1 −ρ
−ρ −1

)−1(0
1

)

=
1

1−ρ2

(
1 −ρ
−ρ 1

)(
0
1

)
=

1
1−ρ2

(
−ρ
1

)
.

(23)

If all went well, we should have gotten the same result as if we had directly taken the derivative of
Eq. (10) with respect to D2—which is indeed the case. Fig. 3B shows these sensitivities.

As a side note, observe that the σi are meaningful even for −1 < ρ < 0. A negative ρ means the
ith consumer facilitates the resource it cannot digest. A stable equilibrium still ensues in this case,
but species 1, instead of responding negatively to an increase in D2, will respond positively due to
this facilitation. This is not apparent from looking only atVIVS = 1−ρ2, which is independent of
the sign of ρ . The volumes do give general information about robustness, but the numerical details
are only given by the full sensitivity formula.
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In summary, the key quantity determining the sensitivity of equilibrium abundances to D2 in this
example is ρ , measuring the segregation between the two impact vectors. As ρ approaches 1 from
below, the impact vectors become similar and therefore sensitivity towards parameter perturbations
becomes large. Also, the range of D2 values allowing for coexistence shrinks to zero gradually as
ρ increases, as shown by Eq. (12) and Fig. 3. For ρ ≈ 1, it becomes very hard to fine-tune D2 to
support coexistence.

4 Applications

This section applies the community-wide sensitivity framework to three different model studies in
order to demonstrate how the machinery outlined above can handle situations that are significantly
more complicated than the previous toy example, and to demonstrate uses of the framework for
assessing extinction risk and determining species traits predicted by a species interaction model. In
particular, there are three complicating factors we consider. The first is temporal fluctuations in the
environment (Section 4.1), where we also show how coexistence regions and extinction risk can
be estimated from sensitivities. The second is spatial heterogeneity (Section 4.2), where we derive
effective limits to species similarity using sensitivities. The third are noncompetitive interactions
(Section 4.3) in a model where stability criteria do not put a bound on the number of potentially
coexisting species, but sensitivities do.

The details of our calculations are found in the Supporting Information. Importantly, we present
each model with regulating factors already assigned. This is not to say other choices are not
possible (see Box 1), but the details of how and why we choose them are relegated to the Supporting
Information.

4.1 Handling temporal fluctuations: assessing extinction risk in a model of forb-
grass competition

Here we perform community-wide sensitivity analysis on a competition model, proposed by Levine
& Rees (2004), to describe a mechanism of persistence of rare native forbs with exotic grasses
on a California grassland. They proposed that environmental fluctuations are key for generating
coexistence, with the otherwise rare forbs benefiting from occasional good years while being
buffered against bad years due to their superior seed banks (storage effect; Chesson & Warner 1981,
Chesson 1994, 2000). Their annual plant model can be written

Ni(t +1) =
(
(1−gi(t))(1−di)+

λi(t)gi(t)
1+αiR(t)

)
Ni(t), (24)

where i may be 1 (forb) or 2 (grass), Ni(t) is the density of species i’s seeds in the seedbank at time
t, αi = (α, 1), and the time-dependent regulating factor is a linear function of the densities:

R(t) = g1(t)N1(t)
α

+g2(t)N2(t). (25)
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See the caption to Fig. 4 for a description of the model’s parameters (see also Table S1); we used
the field estimates of Levine & Rees (2004) for their values (black tick marks on Fig. 5). As
environmental variability is needed to generate coexistence (Levine & Rees 2004), we assume
that both the fraction of germinating seeds gi(t) and the annual fecundities λi(t) are fluctuating
periodically between “good” and “bad” years. Knowing the value of every parameter, we can
numerically evaluate the model’s sensitivity to each. These sensitivities can then be used to estimate
coexistence regions, which in turn may in principle be used to make informed management decisions
to help prevent species extinctions.
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Figure 4: Sensitivities of the Levine–Rees model of forb-grass competition to each model parameter
(Section 4.1). The parameters are α: reciprocal competition coefficient; di: species i’s seed mortality; g±i :
fraction of species i’s seeds germinating in good/bad years; λ±i : per capita number of seeds produced by
species i in good/bad years. The darker bars represent the sensitivity values of the forb; the lighter bars
represent the sensitivity values of the grass. These sensitivities are valid in bad years. The sensitivities in
good years are qualitatively similar; see Table S3 in the Supporting Information for their values.

This is a discrete-time model where the periodically fluctuating environment generates a limit
cycle. We therefore take the appropriate sensitivity formula off the shelf—in our case, Eq. (34)—and
use the estimated parameter values to calculate the sensitivity of each species’ abundances along the
limit cycle to each model parameter. The details of the calculation are in the Supporting Information;
the results are shown on Fig. 4.

These sensitivities may be used to estimate the parameter ranges allowing for coexistence. Since
N(new)

i ≈ N(old)
i +σi ∆E, we calculate how much ∆E would be needed to make N(new)

i hit zero for at
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Figure 5: Values (black tick marks) and coexistence regions (gray error bars) for each parameter in the
forb-grass competition model (Section 4.1). The dashed line separates parameters measured by the scales on
the left/right side. The upper limit for λ+

2 is cut off due to scale disparity; its value is 128.5. The coexistence
regions are calculated, using the stationary densities in Eq. (S5) and the sensitivity values in Table (S3) in the
Supporting Information (also shown on Fig. 4 for bad years), as the most extreme parameter values for which
both species are still persisting with positive abundances at each point along the limit cycle.

least one of the species. The results are in Fig. 5. It is immediately seen that there are a handful of
parameters with relatively narrow coexistence regions. For instance, forb germination in good years
and grass fecundity in bad years have restrictive enough ranges that they might warrant attention. As
long as the model is an accurate representation of the true dynamics in this system, the implications
would be that careful monitoring of these quantities is necessary to prevent the extinction of the
species.

4.2 Handling spatial heterogeneity: trait combinations leading to robust coexis-
tence in the tolerance-fecundity tradeoff model

We now turn our attention to a model where the species have population structure. This model, the
tolerance-fecundity tradeoff, was originally proposed by Muller-Landau (2010) and later generalized
by D’Andrea et al. (2013). It is a mechanistic model which enjoys empirical support as a potential
driver for maintaining seed size diversity in plant communities (Lonnberg & Eriksson 2013). In
this model sessile individuals produce seeds competing for sites of varying environmental stress
levels, ranging from s1 (lowest) to sM (highest). The tradeoff is realized via the assumption that the
more tolerant a species is to stressful conditions, the fewer seeds it produces. The stress tolerance of
species i’s seeds is given by the function Ti(s), measuring the probability of an individual seed of
species i surviving on a site of stress level s. We assume Ti(s) is a sigmoid function: each species is
really good at tolerating a given range of stress levels, after which the tolerance quickly falls to low
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values. One particular functional form implementing this property is

Ti(s) =
tanh

(
τ(sM− fi− s)

)
+1

2
, (26)

where the parameter τ controls the abruptness of the transition between the tolerant and intolerant
regimes (Fig. 6A).

The governing equation for this model reads

dNi,a

dt
=

M

∑
b=1

(
fiTi(sa)R(sa)−miδab

)
Ni,b, (27)

where Ni,a is the abundance of species i across sites of stress level sa, fi and mi are the adult fecundity
and mortality rates of species i, δab is the identity matrix (equal to 1 if a = b and to 0 otherwise),
and the regulating variables are given by

R(sa) =
c(sa)−∑S

i=1 Ni,a

∑S
k=1 fkNkTk(sa)

. (28)

Here c(sa) is the number of sites of stress level sa, and Nk is the total abundance of species k
across all sites. R(sa) measures the effect of crowding in sites of stress level sa, with larger values
corresponding to less crowding (see the Supporting Information).

This model is a continuous-time structured model. Previous studies show it converges to a
fixed point (D’Andrea et al. 2013). We therefore take Eq. (36) off the shelf for the analysis. In the
Supporting Information we show that the sensitivity vectors are given by

Si,σ = fiTi(sσ ). (29)

This expression has a very important property: it is independent of the equilibrium population
distributions Ni,a. Therefore, it can be evaluated without having to solve for the equilibrium state.

By Eq. (5), a smallVS will lead to small robustness. Let us consider just two competing species.
We can then plot the volume spanned by S1,σ and S2,σ as a function of the two fecundities f1
and f2 (Fig. 6B; see the Supporting Information for the calculations). We can see from Fig. 6B
that coexistence is most likely when one species has high fecundity and the other an intermediate
one: that is the portion of the plot where the volumeVS is the largest. Notice also that robustness
is always low near the f1 = f2 line. This property imposes an effective limit to the similarity of
coexisting species: though stable coexistence of very similar fecundity values is possible, it is
unlikely because of the low associated robustness.

Note that we usedVS as a proxy for robustness, when in fact the relevant quantity isVIVS
(Eq. 5). We show in the Supporting Information however thatVI is correlated withVS, therefore
whenever the latter is small, so is the former. Also, the result in Fig. 6B is easily generalized to S
species by considering the S-dimensional volume spanned by the vectors Si,µ = fiTi(sµ)—though
visualizing the results might prove challenging for S≥ 3.

18



s1 sM

0

1

Environmental stress level s

T
o

le
ra

n
ce

fu
n

ct
io

n
T

HsL
A: Tolerance functions of two species

Species 1

Hhigh f L
Species 2

Hlow f L

0 5 10
0

5

10

Fecundity f1

F
ec

u
n

d
it

y
f 2

B: Robustness of coexistence V S

0

20

40

60

0

0

5

10

Figure 6: The tolerance-fecundity tradeoff model (Section 4.2). Panel A: tolerance functions of two species
(solid and dashed curves). The abscissa represents stress, ranging from s1 to sM . The ordinate is the probability
that a seed survives the given stress level. The tolerance functions are sigmoid curves with a relatively abrupt
transition from the tolerant to the intolerant regime. The tradeoff is implemented by making the species
with the higher fecundity f less tolerant. Panel B: The volumeVS spanned by the sensitivity vectors of two
species, as a function of their fecundities; units are [1/time2]. The volume is largest where one species has
high fecundity and the other an intermediate one. Both species possessing similar fecundities leads to small
volumes. We know from Eq. (5) that a small volume is sufficient for making coexistence oversensitive and
therefore unrealistic; only in the high-volume regions is coexistence even a possibility.

4.3 Handling noncompetitive interactions: stability vs. robustness of coexistence in
the Gross model of interspecific facilitation

For our final example we analyze a model of interspecific facilitation proposed by Gross (2008).
There have been ongoing efforts to incorporate facilitation into ecological theory in a general way
for more than a decade now (Bruno et al. 2003), and the model of Gross (2008) is an important step
in this direction. This example demonstrates how large a difference it makes to shift the emphasis
from the stability of coexistence to its robustness against varying parameters. If one only considers
stability, expected diversity is in fact unlimited. Taking sensitivities into account, the maximum
number of species turns out to be strongly limited.

The Gross model is one of intraguild mutualism (Crowley & Cox 2011), where several consumer
species compete for a single resource. Facilitation is included via the assumption that an increase
in the abundance of one competitor reduces the death rate of another. Empirical examples include
plant species providing cushion for others (Cerfonteyn et al. 2011, McIntire & Fajardo 2013), and
Müllerian mimicry rings in butterflies (Elias et al. 2008) or catfish (Alexandrou et al. 2011), where
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joining the ring confers an advantage to otherwise competing species by reducing nonregulatory
predation pressure.

In the simplest version of the model only two species compete: in this case, the coexistence
condition is that the mutualistic effects must confer enough advantage on the species to turn their
invasion growth rates positive when the other species is resident. When generalizing the model
to several species, the facilitation network may in principle be arbitrarily complicated, but Gross
(2008) made a simplifying assumption to keep the model tractable: facilitation was assumed to
be hierarchical. This means species 1 is not facilitated by anyone, species 2 is facilitated only by
species 1, species 3 is facilitated by species 1 and 2, and so on. This assumption actually allows for
more coexistence on average than random facilitation networks (Gross 2008). The equations for this
model read

1
Ni

dNi

dt
= fi(R)−m0

i +di

(
1− exp

(
−θ ∑

k<i
Nk

))
(i = 1 . . .S) (30)

for the consumers, and
dR
dt

= g(R)−
S

∑
i=1

ci fi(R)Ni (31)

for the resource (SI). Here S is the total number of consumer species, Ni is the density of species i,
fi(R) is its per capita resource-dependent growth rate, m0

i its baseline mortality, di the maximum
advantage it can gain from facilitation (we assume di ≤ m0

i ), θ measures the facilitative advantage
conferred by a single species, R is the resource, g(R) the resource supply rate, and ci the species’
consumption rates.

The consequences of this facilitation on coexistence are drastic: Gross (2008) has proven that an
arbitrary number of species may coexist on the single resource. His proof relies on demonstrating
that, given a community of S species, one can always choose parameters such that an (S+ 1)th
species can be added without causing any extinctions. In dynamical terms: if there was a stable
equilibrium point for S species, there will also be one for S+1 species as well.

Stable coexistence of an arbitrary number of species is therefore possible. However, one can
also ask how sensitive this nontrivial stable fixed point is to altering parameters. As proven in the
Supporting Information, increasing the number of species will make the community ever more
sensitive to parameter changes. The asymptotic robustness of the community, for large S, is shown
to be

S
√
VIVS ∼ Nθ exp(−NθS/2) , (32)

where N is the smallest of the equilibrium densities of the consumer species. Taking the Sth root of
VIVS makes robustness comparable across different values of S; see the Supporting Information
for details.

This demonstrates that robustness decays exponentially with the number of species: any S
substantially larger than Smax ≈ 1/(Nθ) will make this expression exponentially small. Fig. 7 shows
robustness as a function of S and Nθ : clearly, we cannot realistically expect more than a handful
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of species. Robustness considerations therefore significantly alter the level of expected diversity
compared with estimates based on stability criteria, which do not put a limit on the number of
species at all.
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Figure 7: Robustness in the Gross model (Section 4.3). Robustness is measured by S
√VIVS as a function of

the (scaled) facilitative advantage Nθ for various values of the species richness S, based on Eq. (32). Overall,
robustness decreases with increasing S. For a fixed number of species, the most robust scenario always
happens at an intermediate Nθ value. The figure underlines the result that coexistence of more than a handful
of species through the cascade of facilitation in the Gross model is a highly unrobust, and therefore unlikely,
outcome.

The theory is thus in line with the empirical observation that facilitation leads to the evolutionary
convergence of traits acting to reduce nonregulatory predation (Elias et al. 2008), and also with the
fact that robustness of coexistence is enhanced by divergence along other trait dimensions. Since
we have seen that the maintenance of very many species via pure facilitation with a single limiting
resource is not possible, one should expect segregation along other regulating factors as well in
species-rich communities—as was aptly demonstrated by Alexandrou et al. (2011).

5 Discussion

5.1 General insights regarding robust coexistence

In this work we have attempted to demonstrate through a handful of examples the kinds of benefits
a new way of analyzing the sensitivity of coexistence might hold for ecology. The examples were
aimed at covering a diverse range of different situations: fluctuation-mediated coexistence, spatially
structured communities, and noncompetitive interactions. Yet behind the diversity of applications
underlies a fundamental unity in how the problems are approached and what methods are employed.
This unified perspective is achieved through the consideration of regulating factors, and through the
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introduction of impact and sensitivity vectors describing species’ interactions with these factors. Just
as in the context of population-level sensitivity analyses (Caswell 2008), having explicit sensitivity
formulas means one can gain general insights not accessible via purely simulation-based approaches.

The generality and flexibility of the concept of regulating factors allows for the common
treatment of seemingly very different types of interactions. Traditional resource competition,
predator-mediated effects (such as apparent competition), facilitation, spatial effects, and temporal
segregation are all handled on the same footing: the details do change (Box 3), but both their
underlying mathematical structure and their basic biological interpretation remains the same.

The mathematical framework presented here further shows that species’ impact and sensitivity
vectors characterize the system’s sensitivity to environmental perturbations, regardless of whether the
system is at equilibrium or not, or whether there is spatial structure, or noncompetitive interactions.
Specifically, the volumes spanned by these vectors are key in determining sensitivity via Eq. (5):
large volumes imply low sensitivity, while small volumes imply high sensitivity. Hence, high
environmental variability coupled with small volumes is expected to lead to extinctions, making it
less likely that such communities would be observed. This provides a general understanding of the
distribution of species traits expected in robust communities, and reveals constraints that robustness
requirements may put on communities, beyond those imposed by stability.

What causes impact and sensitivity vectors to span small volumes? There are two options. First,
volumes will be small if the vectors are short, i.e., the regulating interactions of the populations are
weak. Second, volumes will be small if the vectors spanning them are nearly collinear or, more
generally, linearly dependent (Fig. 2): that is, when the regulating interactions of the different
species are not differentiated sufficiently.

This second possibility is nothing else than the classical idea of limiting similarity, formulated in
a precise way. Sensitivity analysis adds precision in three ways. First, it clarifies that coexistence of
similar species it is not impossible, just unlikely, requiring a narrow set of environmental parameters.
Second, it yields a quantitative estimate of this parameter range. Third, it clarifies that the property
in which species must differ for robust coexistence is their way of being regulated, described by the
impact and sensitivity vectors.

When the number of regulating factors is smaller than the number of species, the framework
shows that not only is it impossible for all of the species to coexist stably (Levin 1970), it is also
impossible for them to coexist robustly, sinceVI (orVS) will be zero. Moreover, even when the
number of regulating factors is infinite (Section 4.2) or unbounded (Section 4.3), in which case
consideration of stability alone would suggest that coexistence of infinitely many species is at least
possible, sensitivity analysis shows infinite diversity is not expected, because too much coexistence
leads to overly similar impact and sensitivity vectors. We saw this explicitly in the results of our
analysis of the tolerance-fecundity tradeoff model (Fig. 6B): robustness is zero along the line of
identical fecundities f1 = f2. This is because the sensitivity vectors of identical species are the same,
so they point in the same direction, leading to VS = 0. Robustness is still very small if the two
fecundities are nearly equal. Importantly, what we see on Fig. 6B reflects a property we will observe
in all cases, because VI and VS are continuous functions of the impact and sensitivity vectors.
Therefore, near-identical species will always have near-zero robustness.
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In this way, the community-wide sensitivity analysis of coexistence essentially recreates what
usually goes under the umbrella of “niche theory” (Case 2000, p. 368): avoiding competitive
exclusion requires limited niche overlap as measured by impact and sensitivity vectors. Though
the expectation of strict limits to similarity is mathematically and biologically naive, sensitivity
analysis leads to the conclusion that effective limits to similarity are still the expected rule of thumb
(Section 4.2, Szabó & Meszéna 2006, Barabás & Meszéna 2009, Barabás et al. 2012b).

The robustness perspective naturally leads to the empirical question of how robust natural
communities tend to be. As we have seen, sensitivities, coupled with a knowledge of the size of
typical environmental perturbations, yield viable parameter regions. How wide do these regions tend
to be in natural communities compared to what is strictly required for the community’s persistence?
Put another way, does the regime of environmental variation have a big influence on community
structure, or do other forces governing community structure (e.g., selection for trait differences
among species) act to generate communities even more robust than required? One study by Adler
et al. (2010) in a perennial plant community suggests the stabilization of coexistence is quite strong
(much stronger than strictly necessary to compensate for fitness differences between the species),
suggesting it should also be quite robust. However, the parameter region allowing for coexistence
must be compared with the range of environmental fluctuations in this system if we are to get a
definitive answer.

In fact, one may wonder whether community robustness tends to vary systematically along
environmental gradients. Certain environments are relatively constant; some are more variable,
which in general means more perturbed. More perturbed communities require, ceteris paribus, a
wider coexistence region. Does this actually play out in nature? And if so, what consequences
does it have for expected community and diversity patterns? We believe that the community-wide
sensitivity framework will help answer these and similar empirical questions.

5.2 Limitations of the framework

Though the presented method does provide the applied and theoretical advantages outlined above,
it also comes with its inevitable drawbacks and caveats. The most important drawback is that
the method is based on linearization: sensitivity values are accurate only for small parameter
perturbations. Therefore, extrapolations to large parameter changes should be treated with care,
which will only be accurate if the sensitivities themselves are not very sensitive. If they are heavily
convex/concave functions, or if the analyzed equilibria undergo saddle-node bifurcations between
their current locations and zero (signaling a potential catastrophic shift), the linear extrapolations
will be unreliable. Then, the method’s safest domain of application is looking at the response
of systems strictly to small parameter changes. This is an important point in the context of the
Levine–Rees model (Section 4.1), where the coexistence regions of Fig. 5 are all derived using
linear extrapolation.

Fortunately, a common experience in performing sensitivity analyses is that extrapolations based
on sensitivities yield surprisingly accurate results even for large perturbations, both in a population
(de Kroon et al. 2000) and a community-wide (Barabás & Ostling 2013, Barabás et al. 2014) context.
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Under what circumstances we may expect such accuracy is an open question. However, use of the
linear approximation means our methods are ill-suited for studying the effects of species removal on
communities (Ebenman et al. 2004, Ebenman & Jonsson 2005, Allesina & Pascual 2009), because
such perturbations involve very large changes in the system.

Another issue is that all parameter estimates possess a level of uncertainty. How can we know
the degree to which measurement errors affect sensitivity results? There are two aspects to this
problem. First, as mentioned above, if the linear approximation is not very good, sensitivity values
might themselves sensitively depend on measured parameter values. Second, even if sensitivities
are accurate for a wide range of parameters, predictive power may be hampered if their values are
very large: then, even a small error in measurement would mean a large error in prediction.

How can one deal with this problem in practice? First, it can be approached in the same way
as any other kind of uncertainty: by considering the confidence intervals of parameter estimates,
and repeating the sensitivity calculations for various randomly chosen parameter values within the
parameters’ confidence intervals. This way, one obtains a distribution of sensitivities instead of a
single sensitivity value. See Barabás & Ostling (2013) and Barabás et al. (2014) for how this is done
in practice. The same procedure could then be applied, for instance, to the Levine–Rees model if we
had data on parameter error estimates.

Second, note that, in contrast to experience with smaller communities (Barabás & Ostling 2013,
Barabás et al. 2014), several studies (Yodzis 1988, Dambacher et al. 2002, Novak et al. 2011)
have found very high sensitivities of equilibrium abundances to press perturbations when analyzing
large ensembles of species. Systematic application of our methods to large systems is work in
progress, but if we believe these results to be general (i.e., large communities are more sensitive),
then one possibility for avoiding the problem of overly high sensitivities is to concentrate on smaller
community compartments which can be thought of as independent mesocosms consisting of just a
handful of species (Krause et al. 2003, Guimerà et al. 2010, Stouffer & Bascompte 2011).

Yet another caveat comes with using the volumetric approach, based onVI andVS, to gain
insight into the robustness of coexistence. As we have seen, these volumes can provide a shortcut to
robustness calculations. They are, however, only part of the story because in Eq. (2) the vector z j

also plays a role. Though the volumes may be small, the vector z j may also be small and therefore
robustness may not be as weak as it appears based on the volumes alone (or vice versa). In an
extreme case, imagine that the growth rates are at a local maximum or minimum with respect to
E; then z j = ∂ r j/∂E = 0, so sensitivity is zero regardless of VIVS. In Section 3 for instance,
VIVS was insensitive to the sign of ρ , but the sensitivities were not. The volumes do reveal general
information, but not the numerical details.

Moreover, though the presented framework can already treat a variety of dynamics, the list is
far from complete. We do not yet have formulas for the sensitivity of general, aperiodic stationary
oscillations (with or without population structure), or formulas for the sensitivity of transients instead
of stationary states. Transient sensitivities would enable us to assess the short-term consequences of
parameter changes, an endeavor just as important as being able to calculate long-term consequences.

Finally, a note about the procedure outlined in Section 3 for performing sensitivity analyses
(which we consistently follow in the main text and the Supporting Information as well). Although it

24



looks straightforward, this does not mean all case studies will look the same. To take an analogy,
consider conventional sensitivity analysis of structured populations. One could say it is very
simple: 1) construct the life cycle graph; 2) estimate the transition probabilities and fecundities; 3)
calculate the leading eigenvalue; 4) calculate the corresponding left and right eigenvectors; 5) create
their tensor product to obtain the sensitivity matrix. But, as Caswell himself pointed out: “Every
population analysis that I have been involved with has required some unique methodological twists
and turns” (Caswell 2001, p. 107). What we provided is merely an outline, which does not imply
that particular models can have no “special needs” in their analyses.

6 Conclusions

The recently developed mathematical framework for the sensitivity analysis of stationary abun-
dances of interacting species to parameter perturbations provides an important new perspective in
community ecology. It opens up the possibility of an analytical approach to estimating extinction
risk. It provides a tool for understanding how diversity and community patterns may be influenced
by environmental variation, in addition to stability constraints. Finally, it yields insight into the
nature of the interaction between robustly coexisting species, in terms of species’ interactions with
regulating factors. These insights apply fairly generally, even to models with complex dynamics,
and provide a new perspective on the concept of niche differentiation in ecology. Here we have
guided the reader on the use of this new mathematical framework and illustrated its potential through
application to a variety of models. Although the framework has limitations—most notably in that it
is based on a linear approximation—its application could help answer a set of empirical questions
in community ecology regarding the degree to which environmental fluctuations and robustness
constraints determine the structure of communities.
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Box 3: Community-wide sensitivity formulas

Below we give a catalog list of the sensitivity formulas for various dynamical scenarios.
The general structure of each equation is given by Eq. (2):

σi =−
S

∑
j=1

a−1
i j z j,

where a−1
i j is the (i, j)th entry of the inverse matrix, not the inverse of the (i, j)th entry. For each

case we state the applicability of the given formula, reference where it was originally derived,
give the interpretation of σi along with the formulas for ai j and z j, and indicate the impact and
sensitivity vectors I j,µ and Si,µ .

1. Fixed point dynamics, in either discrete or continuous time, for communities of unstruc-
tured populations (Meszéna et al. 2006):

σi =
dNi

dE
, ai j = ∑

µ

∂ ri

∂Rµ︸︷︷︸
Si,µ

∂Rµ

∂N j︸︷︷︸
I j,µ

, z j =
∂ r j

∂E
. (33)

In discrete time, ri is the natural log of species i’s discrete geometric rate of growth from time t
to t +1: ri = log(Ni(t +1)/Ni(t)). In continuous time, ri is the per capita growth rate of species
i: ri = dNi/(Nidt).

2. Limit cycle of fixed period length T in discrete time, for communities of unstructured
populations (Barabás & Ostling 2013):

σi =
1

Ni(0)
dNi(0)

dE
, ai j =−δi j +

0

∏
t=T−1

(
δi j +∑

µ

∂ ri(t)
∂Rµ(t)︸ ︷︷ ︸
Si,µ (t)

∂Rµ(t)
∂N j(t)

N j(t)
︸ ︷︷ ︸

I j,µ (t)

)
, z j =

T−1

∑
t=0

∂ r j(t)
∂E

,

(34)
where ri(t) = log(Ni(t + 1)/Ni(t)), and δi j is the identity matrix (equal to 1 if i = j and to 0
otherwise). The product from t = T − 1 to 0 above refers to the (i, j)th entry of a product
of matrices (taken in decreasing order in time), not to the product of the (i, j)th entries—see
Eqs. (S12) and (S13) in the Supporting Information for the special case of T = 2. Note that
the regulating factors are functions of t within the cycle, so each regulating variable at each
moment in time can potentially serve as a separate regulating factor.

3. Limit cycle of fixed period length T in continuous time, for communities of unstructured
populations (Barabás et al. 2012a): this is obtained simply from Eq. (34) in the limit of infinitely
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many infinitesimally small discrete time steps ∆t (Barabás & Ostling 2013):

σi =
1

Ni(0)
dNi(0)

dE
, ai j =−δi j+TExp

(∫ T

0
∑
µ

∂ ri(t)
∂Rµ(t)︸ ︷︷ ︸
Si,µ (t)

∂Rµ(t)
∂N j(t)

N j(t)
︸ ︷︷ ︸

I j,µ (t)

dt
)
, z j =

∫ T

0

∂ r j(t)
∂E

dt,

(35)
where Exp means matrix exponential (obtained by substituting the matrix in the argument into
the usual Taylor series of the exponential function), and T is the time-ordering operator that
rearranges a product of matrices to decreasing order in time (Barabás et al. 2012a).

4. Fixed point dynamics in either discrete or continuous time, for communities of structured
populations (Szilágyi & Meszéna 2009a, Barabás et al. 2014):

σi =
dNi

dE
, ai j = ∑

µ

(
∑
a,b

vi,a
∂Ai,ab

∂Rµ
wi,b

)

︸ ︷︷ ︸
Si,µ

∑
ν

(
δµν −

∂Gµ

∂Rν

)−1(
∑
c

∂Rν

∂N j,c
w j,c

)

︸ ︷︷ ︸
I j,µ

,

z j = ∑
a,b

v j,a
∂A j,ab

∂E
w j,b +∑

µ,ν

(
∑
a,b

vi,a
∂Ai,ab

∂Rµ
wi,b

)(
δµν −

∂Gµ

∂Rν

)−1 ∂Gν

∂E
,

(36)

where Ai,ab is the (a,b)th entry of species i’s projection matrix evaluated at equilibrium; Ni

is the weighted total abundance of species i; δµν is the identity matrix; vi,a, wi,a, and Ni,a are
the ath component of species i’s leading left and right eigenvectors and population abundance
vector, respectively; the inverses always refer to the (µ,ν)th entries of the inverse matrix as
opposed to the inverse of the (µ,ν)th entries; and

Gµ (Rν ,E) =∑
j

∑
a,b,c

(
n j

∑d q j,dw j,d

∂Rµ

∂n j,a

s j

∑
k=2

1
λ j−λ k

j

(
wk

j,a−
∑e q j,ewk

j,e

∑ f q j, f w j, f
w j,a

)
vk

j,b

)

×A j,bc (Rν ,E)w j,c

(37)

describes the effect of perturbing the species’ population structures on the regulation of the
community (the dependence of Gµ on Rν and E comes strictly from A j,bc; all other quantities
are evaluated at the unperturbed equilibrium). Here q j,a is a positive vector giving the weight
of the ath stage class in the weighted total abundance of species j, λ j is species j’s leading
eigenvalue, s j is the number of stage classes of species j, and the superscript k means we are
considering the kth (non-leading) eigenvalue/eigenvector. The eigenvectors are normalized so
that ∑a wi,a = 1 and ∑a vk

i,awl
i,a = δkl for every species i. Though the nature of the population

structure can be arbitrary (age, stage, physiological, spatial,. . . ), in the special case of spatial
structure a single regulating factor R can be thought of as splitting up into as many different
factors as the number of distinct spatial locations.

27



Acknowledgements

We would like to thank Stefano Allesina, Rafael D’Andrea, Aaron King, Mercedes Pascual, and
István Scheuring for discussions, and Hal Caswell and two anonymous reviewers for their helpful
comments on the manuscript. LP and GM were supported by the Hungarian Scientific Research
Fund (grant OTKA K81628).

References

Abrams, P. A. (1984). Variability in resource consumption rates and the coexistence of competing
species. Theoretical Population Biology, 25, 106–124.

Abrams, P. A. (2001). The effect of density-independent mortality on the coexistence of exploitative
competitors for renewing resources. American Naturalist, 158, 459–470.

Abrams, P. A. & Holt, R. D. (2002). The impact of consumer-resource cycles on the coexistence of
competing consumers. Theoretical Population Biology, 62, 281–295.

Abrams, P. A., Brassil, C. E. & Holt, R. D. (2003). Dynamics and responses to mortality rates
ofcompeting predators undergoing predator–prey cycles. Theoretical Population Biology, 64,
163–176.

Abrams, P. A. (2004). When does periodic variation in resource growth allow robust coexistence of
competing consumer species? Ecology, 85, 372–382.

Abrams, P. A. & Nakajima, M. (2007). Does competition between resources change the competition
between their consumers to mutualism? variations on two themes by vandermeer. American
Naturalist, 170, 744–757.

Adamson, M. W. & Morozov, A. (2012). When can we trust our model predictions? Unearthing
structural sensitivity in biological systems. Proceedings of the Royal Society A.

Adler, P. B., Ellner, S. P. & Levine, J. M. (2010). Coexistence of perennial plants: an embarrassment
of niches. Ecology Letters, 13, 1019–1029.

Alexandrou, M. A., Oliveira, C., Maillard, M., McGill, R. A. R., Newton, J., Creer, S. & Taylor,
M. I. (2011). Competition and phylogeny determine community structure in Müllerian co-mimics.
Nature, 469, 84–88.

Allesina, S. & Pascual, M. (2009). Googling food webs: can an eigenvector measure species’
importance for coextinctions? PLoS Computational Biology, 5, e10000494.

Armstrong, R. (1976). Fugitive species: Experiments with fungi and some theoretical considerations.
Ecology, 57, 953–963.

28



Armstrong, R. & McGehee, R. (1980). Competitive exclusion. American Naturalist, 15, 151–170.

Aufderheide, H., Rudolf, L., Gross, T. & Lafferty, K. D. (2013). How to predict community responses
to perturbations in the face of imperfect knowledge and network complexity. Proceedings of the
Royal Society of London Series B, 280, 20132355.

Barabás, G. & Meszéna, G. (2009). When the exception becomes the rule: the disappearance of
limiting similarity in the Lotka–Volterra model. Journal of Theoretical Biology, 258, 89–94.

Barabás, G., Meszéna, G. & Ostling, A. (2012a). Community robustness and limiting similarity in
periodic environments. Theoretical Ecology, 5, 265–282.

Barabás, G., Pigolotti, S., Gyllenberg, M., Dieckmann, U. & Meszéna, G. (2012b). Continuous
coexistence or discrete species? A new review of an old question. Evolutionary Ecology Research,
14, 523–554.

Barabás, G., D’Andrea, R. & Ostling, A. (2013). Species packing in nonsmooth competition models.
Theoretical Ecology, 6, 1–19.

Barabás, G. & Ostling, A. (2013). Community robustness in discrete-time periodic environments.
Ecological Complexity, 15, 122–130.

Barabás, G., Meszéna, G. & Ostling, A. (2014). Fixed point sensitivity analysis of interacting
structured populations. Theoretical Population Biology, 92, 97–106.

Bender, E. A., Case, T. J. & Gilpin, M. E. (1984). Perturbation experiments in community ecology:
Theory and practice. Ecology, 65, 1–13.

Birch, L. C. (1953). Experimental background to the study of the distribution and abundance of
insects. I. The influence of temperature, moisture, and food on the innate capacity for increase of
three grain beetles. Ecology, 34, 698–711.

Bruno, J. F., Stachowitz, J. J. & Bertness, M. D. (2003). Inclusion of facilitation into ecological
theory. Trends in Ecology and Evolution, 18, 119–125.

Case, T. J. (2000). An Illustrated Guide to Theoretical Ecology. Oxford University Press, New York.

Caswell, H. (1982). Optimal life histories and the age-specific costs of reproduction. Journal of
Theoretical Biology, 98, 519–529.

Caswell, H. (1984). Optimal life histories and age-specific costs of reproduction: two extensions.
Journal of Theoretical Biology, 107, 169–172.

Caswell, H. (2001). Matrix population models: Construction, analysis and interpretation. 2nd
edition. Sinauer Associates.

29



Caswell, H. (2008). Perturbation analysis of nonlinear matrix population models. Demographic
Research, 18, 59–115.

Caswell, H. (2011). Matrix models and sensitivity analysis of populations classified by age and
stage: a vec-permutation matrix approach. Theoretical Ecology.

Cerfonteyn, M. E., Le Roux, P. C., Van Vuuren, B. J. & Born, C. (2011). Cryptic spatial aggregation
of the cushion plant Azorella selago (Apiaceae) revealed by a multilocus molecular approach
suggests frequent intraspecific facilitation under sub-Antarctic conditions. American Journal of
Botany, 98, 909–914.

Charlesworth, B. & Leon, J. A. (1976). The relation of reproductive effort to age. American
Naturalist, 110, 449–459.

Chesson, P. & Warner, R. R. (1981). Environmental variability promotes coexistence in lottery
competitive systems. American Naturalist, 117, 923–943.

Chesson, P. (1994). Multispecies competition in variable environments. Theoretical Population
Biology, 45, 227–276.

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology
and Systematics, 31, 343–366.

Cordoleani, F., Nerini, D., Gauduchon, M., Morozov, A. & Poggiale, J-C. (2011). Structural
sensitivity of biological models revisited. Journal of Theoretical Biology, 283, 82–91.

Crouse, D. T., Crowder, L. B. & Caswell, H. (1987). A stage-based population model for loggerhead
sea turtles and implications for conservation. Ecology, 68, 1412–1423.

Crowley, P. H. & Cox, J. J. (2011). Intraguild mutualism. Trends in Ecology and Evolution, 26,
627–633.

Dambacher, J. M., Li, H. W. & Rossignol, P. A. (2002). Relevance of community structure in
assessing indeterminacy of ecological predictions. Ecology, 83, 1372–1385.

D’Andrea, R., Barabás, G. & Ostling, A. (2013). Revising the tolerance-fecundity trade-off; or, on
the consequences of discontinuous resource use for limiting similarity, species diversity, and trait
dispersion. American Naturalist, 181, E91–101.

Ebenman, B., Law, R. & Borrvall, C. (2004). Community viability analysis: The response of
ecological communities to species loss. Ecology, 85, 2591–2600.

Ebenman, B. & Jonsson, T. (2005). Using community viability analysis to identify fragile systems
and keystone species. Trends in Ecology and Evolution, 20, 568–575.

30



Elias, M., Gompert, Z., Jiggins, C. & Willmott, K. (2008). Mutualistic interactions drive ecological
niche convergence in a diverse butterfly community. PLOS Biology.

Fujiwara, M. & Caswell, H. (2001). Demography of the endangered North Atlantic right whale.
Nature, 414, 537–541.

Gleeson, S. K. (1984). Medawar’s theory of senescence. Journal of Theoretical Biology, 108,
475–479.

Gross, K. (2008). Positive interactions among competitors can produce species-rich communities.
Ecology Letters, 11, 929–936.

Gross, T., Edwards, A. M. & Feudel, U. (2009). The invisible niche: weakly density-dependent
mortality and the coexistence of species. Journal of Theoretical Biology, 258, 148–155.

Guimerà, R., Stouffer, D. B., Sales-Pardo, M., Leicht, E. A., Newman, M. E. J. & Amaral, L. A. N.
(2010). Origin of compartmentalization in food webs. Ecology, 91, 2941–2951.

Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical
Biology, 12, 12–45.

Hochberg, M. E., Thomas, J. A. & Elmes, G. W. (1992). A modelling study of the population
dynamics of a large blue butterfly, Maculinea rebeli, a parasite of red ant nests. Journal of Animal
Ecology, 61, 397–409.

Hunter, C. M., Caswell, H., Runge, M. C., Regehr, E. V., Amstrup, S. C. & Stirling, I. (2010).
Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology, 91,
2883–2898.

Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. (2003). Compartments
revealed in food-web structure. Nature, 426, 282–285.

de Kroon, H., van Groenendael, J. & Ehrlén, J. (2000). Elasticities: a review of methods and model
limitations. Ecology, 81, 607–618.

Kuznetsov, Y. (2004). Elements of applied bifurcation theory, 3rd edition. Springer Verlag, Berlin.

Levin, S. A. (1970). Community equilibria and stability, and an extension of the competitive
exclusion principle. American Naturalist, 104, 413–423.

Levine, J. M. & Rees, M. (2004). Effects of temporal variability on rare plant persistence in annual
systems. American Naturalist, 164, 350–363.

Levins, R. (1968). Evolution in changing environments. Princeton University Press, Princeton.

Levins, R. (1974). Qualitative analysis of partially specified systems. Ann. NY Acad. Sci., 231,
123–138.

31



Lonnberg, K. & Eriksson, O. (2013). Rules of the seed size game: contests between large-seeded
and small-seeded species. Oikos, 122, 1080–1084.

MacArthur, R. H. & Levins, R. (1967). Limiting similarity, convergence, and divergence of
coexisting species. American Naturalist, 101, 377–385.

May, R. M. (1973). Stability and Complexity in Model Ecosystems. Princeton University Press,
Princeton.

McIntire, E. J. B. & Fajardo, A (2013). Facilitation as a ubiquitous driver of biodiversity. New
Phytologist.

Meszéna, G., Gyllenberg, M., Pásztor, L. & Metz, J. A. J. (2006). Competitive exclusion and
limiting similarity: a unified theory. Theoretical Population Biology, 69, 68–87.

Michod, R. (1979). Evolution of life histories in response to age-specific mortality factors. American
Naturalist, 113, 531–550.

Muller-Landau, H. C. (2010). The tolerance-fecundity trade-off and the maintenance of diversity in
seed size. Proceedings of the National Academy of Sciences of the USA, 107, 4242–4247.

Neubert, M. G. & Caswell, H. (1997). Alternatives to resilience for measuring the responses of
ecological systems to perturbations. Ecology, 78, 653–665.

Noon, B. R. & McKelvey, K. S. (1996). Management of the spotted owl: a case history in
conservation biology. Annual Review of Ecology and Systematics, 27, 135–162.

Novak, M., Wootton, J. T., Doak, D. F., Emmerson, M., Estes, J. A. & Tinker, M. T. (2011).
Predicting community responses to perturbations in the face of imperfect knowledge and network
complexity. Ecology, 92, 836–846.

Pásztor, L., Meszéna, G. & Kisdi, É. (1996). R0 or r: a matter of taste? Journal of Evolutionary
Biology, 9, 511–518.

Seamans, M. E., Gutiérrez, R. J., May, C. A. & Peery, M. Z. (1999). Demography of two Mexican
spotted owl populations. Conservation Biology, 13, 744–754.

Silvertown, J., Franco, M. & Menges, E. (1993). Interpretation of elasticity matrices as an aid to
management of plant populations of conservation. Conservation Biology, 10, 591–597.

Stouffer, D. B. & Bascompte, J. (2011). Compartmentalization increases food-web persistence.
Proceedings of the National Academy of Sciences USA, 108, 3648–3652.

Szabó, P. & Meszéna, G. (2006). Limiting similarity revisited. Oikos, 112, 612–619.

Szilágyi, A. & Meszéna, G. (2009a). Limiting similarity and niche theory for structured populations.
Journal of Theoretical Biology, 258, 27–37.

32



Szilágyi, A. & Meszéna, G. (2009b). Two-patch model of spatial niche segregation. Evolutionary
Ecology, 23, 187–205.

Szilágyi, A. & Meszéna, G. (2010). Coexistence in a fluctuating environment by the effect of relative
nonlinearity: a minimal model. Journal of Theoretical Biology, 267, 502–512.

Tilman, D. (1982). Resource Competition and Community Structure. Princeton, New York.

Vandermeer, J. H. (1975). Interspecific competition: A new approach to the classical theory. Science,
188, 253–255.

Verdy, A. & Caswell, H. (2008). Sensitivity analysis of reactive ecological dynamics. Bulletin of
Mathematical Biology, 70, 1634–1659.

Yeakel, J. D., Stiefs, D., Novak, M. & Gross, T. (2011). Generalized modeling of ecological
population dynamics. Theoretical Ecology, 4, 179–194.

Yodzis, P. (1988). The indeterminacy of ecological interactions as perceived through perturbation
experiments. Ecology, 69, 508–515.

Yodzis, P. (2000). Diffuse effects in food webs. Ecology, 81, 261–266.

33



Sensitivity Analysis of Coexistence in Ecological
Communities: Theory and Application

Supporting Information

György Barabás, Liz Pásztor, Géza Meszéna & Annette Ostling

Contents

Sensitivity analysis of forb-grass competition 2
Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The tolerance-fecundity tradeoff model 8
Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The Gross model 16
Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
The bound on the number of coexisting species . . . . . . . . . . . . . . . . . . . . . . 19

Appendix: the volume spanned by a set of vectors 21

1



Sensitivity analysis of forb-grass competition

Model description

The model of Levine & Rees (2004) is a discrete-time annual plant model. The equations read

Ni(t +1) =
(
(1−gi(t))(1−di)+

λi(t)gi(t)
1+αi (g1(t)N1(t)/α +g2(t)N2(t))

)
Ni(t), (S1)

where the species index i may be 1 (forb) or 2 (grass), and Ni(t) is the number of seeds of species i
in the seed bank in year t prior to germination. The vector αi = (α, 1) is shorthand for α when i = 1
and 1 when i = 2. The description and numerical value of each parameter are given in Table S1.
In this model we assume that the fecundities and germination rates fluctuate periodically between
“good” and “bad” years.

E Description Value
d1 Forb death rate in the seed bank 0.1
d2 Grass death rate in the seed bank 0.7
g−1 Fraction of forb seeds germinating in a bad year 0.1
g+1 Fraction of forb seeds germinating in a good year 0.7
g−2 Fraction of grass seeds germinating in a bad year 0.9
g+2 Fraction of grass seeds germinating in a good year 0.9
λ−1 Number of forb seeds/individual in a bad year 5
λ+

1 Number of forb seeds/individual in a good year 30
λ−2 Number of grass seeds/individual in a bad year 5
λ+

2 Number of grass seeds/individual in a good year 30
α Reciprocal interspecific competition coefficient 2

Table S1: Numerical value and description of each parameter in the Levine–Rees model. The environment is
assumed to oscillate between good (+) and bad (−) years, as shown by the variation in the fecundities and
germination probabilities. The symbol E stands for any one model parameter.

The expression in parentheses in Eq. (S1) is the annual geometric growth rate of species i; its
natural log is the growth rate ri(t):

ri(t) = log
(
(1−gi(t))(1−di)+

λi(t)gi(t)
1+αi (g1(t)N1(t)/α +g2(t)N2(t))

)
. (S2)

Sensitivity analysis

Here we go through all the steps of calculating the sensitivity of the stationary state to each model
parameter. The steps required for the analysis are outlined in the Box.
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Box: The steps of community-wide sensitivity analysis

• Step 0: Determine whether the model is in discrete or continuous time, whether the
populations are structured, and what type of equilibrium (fixed point, limit cycle, . . . ) is
under consideration.

• Step 1: Designate the regulating factors.

• Step 2: Based on Step 0, look up the necessary formulas for the impact and sensitivity
vectors, and calculate them for each species.

• Step 3: Calculate the volumesVI andVS. A small productVIVS signals an oversensi-
tive system. For more precise quantitative estimates, move on to Step 4.

• Step 4: Calculate ai j using the formula appropriate for the particular dynamical scenario
under consideration.

• Step 5: Pick an arbitrary model parameter E of interest and obtain the vector z j from the
appropriate formula.

• Step 6: Calculate the sensitivities σi from the general equation

σi =−
S

∑
j=1

a−1
i j z j,

where a−1
i j refers to the (i, j)th entry of the inverse matrix, as opposed to the inverse of its

(i, j)th entry.

Step 0. As mentioned before, we assume the environment alternates regularly between good
and bad years. This will generate a stationary two-cycle. If the model has a two-cycle, the twice-
compounded model has a fixed point. Solving for the fixed point yields two possible solutions,
corresponding to the two distinct points within the cycle. Using Eq. (S2), the total population growth
over two time steps is zero:

log
(
(1−gi(0))(1−di)+

λi(0)gi(0)
1+αi (g1(0)N1(0)/α +g2(0)N2(0))

)

+ log
(
(1−gi(1))(1−di)+

λi(1)gi(1)
1+αi (g1(1)N1(1)/α +g2(1)N2(1))

)
= 0.

(S3)
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Expressing Ni(1) through Ni(0) by setting t = 0 in Eq. (S1), and substituting the result into Eq. (S3),
we get

log
(
(1−gi(0))(1−di)+

λi(0)gi(0)
1+αi (g1(0)N1(0)/α +g2(0)N2(0))

)

+ log

(
(1−gi(1))(1−di)+λi(1)gi(1)

×
[

1+
αig1(1)

α

(
(1−g1(0))(1−d1)+

λ1(0)g1(0)
1+g1(0)N1(0)+αg2(0)N2(0)

)

+αig2(1)
(
(1−g2(0))(1−d2)+

λ2(0)g2(0)
1+g1(0)N1(0)/α +g2(0)N2(0)

)]−1)
= 0.

(S4)

This constitutes one equation for N1(0) and N2(0) each, giving the fixed point of the twice-
compounded model (i.e., the limit cycle of the original one). With the parameters given in Table S1,
the solution can be obtained numerically via any reputable algorithm for solving systems of nonlinear
algebraic equations. The two pairs of solutions are

(
N−1 = 23.636; N−2 = 10.044

)
,(

N+
1 = 19.697; N+

2 = 4.329
)
,

(S5)

as is easily verified by substituting these values back into Eq. (S4) along with the parameter values in
Table S1 (naturally, there will be some rounding error involved). The N−i and N+

i are the population
densities along the two-cycle. Though the literal calculation we performed was for obtaining the
densities in year t = 0, we got two different results because it is completely arbitrary whether we
designate t = 0 to be a bad or a good year. This means that we can interpret N−i as the densities in a
bad year, and N+

i as the densities in a good year.
As this is a discrete-time model with unstructured populations, and since the attractor under

consideration is a limit cycle, the formulas needed for the analysis are

σi =
1

Ni(0)
dNi(0)

dE
, ai j =−δi j +

0

∏
t=T−1

(
δi j +∑

µ

∂ ri(t)
∂Rµ(t)︸ ︷︷ ︸
Si,µ

∂Rµ(t)
∂N j(t)

N j(t)
︸ ︷︷ ︸

I j,µ

)
, z j =

∂
∂E

T−1

∑
t=0

r j(t)

(S6)
(Barabás & Ostling 2013), where δi j is the identity matrix, equal to 1 if i = j and to 0 otherwise.
These quantities are connected through the general sensitivity formula

σi =−
S

∑
j=1

a−1
i j z j, (S7)

where a−1
i j is the (i, j)th entry of the inverse matrix, not the inverse of its (i, j)th entry.
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Step 1. We choose the regulating factors. It is actually possible to designate a single time-
dependent regulating factor for this model:

R(t) = g1(t)N1(t)
α

+g2(t)N2(t). (S8)

The growth rates in Eq. (S2) read, as a function of this regulating factor, as

ri(t) = log
(
(1−gi(t))(1−di)+

λi(t)gi(t)
1+αiR(t)

)
. (S9)

Keeping R(t) constant, we see that these growth rates would become density-independent, therefore
our choice for the regulating factors is valid.

Step 2. We calculate the impact and sensitivity vectors. From their definitions in Eq. (S6):

I j(t) =
∂R(t)
∂N j(t)

=
g j(t)
α j

, (S10)

Si(t) =
∂ ri(t)
∂R(t) =

(
(1−gi(t))(1−di)+

λi(t)gi(t)
1+αiR(t)

)−1 αiλi(t)gi(t)

(1+αiR(t))2 . (S11)

Step 3. The volumes spanned by the impact and sensitivity vectors may now be calculated using
Eq. (S69) (see the Appendix). We do not perform this step here (we will do so for our other two
model examples); instead, we go straight to the detailed sensitivity analysis.

Step 4. The matrix ai j in Eq. (S6) is written for our model as

ai j =−δi j +
0

∏
t=1

(
δi j +

∂ ri(t)
∂R(t)

∂R(t)
∂N j(t)

N j(t)
)
, (S12)

or, writing out the matrix product, as

ai j =−δi j +
2

∑
k=1

(
δik +

∂ ri(1)
∂R(1)

∂R(1)
∂Nk(1)

Nk(1)
)(

δk j +
∂ rk(0)
∂R(0)

∂R(0)
∂N j(0)

N j(0)
)
. (S13)

We substitute into this expression the equations for the impact and sensitivity vectors, the parameter
values in Table S1, and the stationary densities in Eq. (S5). We get two different results depending
on whether the initial moment t = 0 of the cycle is a bad or a good year. If it is a bad year, we get

a−i j =−
(

0.449 0.079
0.641 0.818

)
. (S14)

Alternatively, if t = 0 is a good year, we get

a+i j =−
(

0.461 0.283
0.196 0.805

)
. (S15)
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E z−1 z−2 z+1 z+2
d1 -0.819 0.623 -1.329 0.024
d2 0.062 -0.199 0.001 -0.243
g−1 -0.176 -0.181 -0.831 -0.980
g+1 -0.319 -0.825 -0.298 -0.175
g−2 0.119 -0.318 -0.026 -0.495
g+2 -0.297 0.605 -0.311 0.181
λ−1 0.003 -0.003 0.006 0
λ+

1 0.026 0 0.026 -0.003
λ−2 -0.050 0.125 0 0.186
λ+

2 0 0.033 -0.001 0.008
α -0.153 0.328 -0.152 -0.134

Table S2: The two components of the vector z j for each parameter. The superscript of z j is “−” if the initial
moment of the cycle is a bad year, and “+” if it is a good year.

E dN−1 /dE dN−2 /dE dN+
1 /dE dN+

2 /dE
d1 -53.81 25.59 -67.16 3.73
d2 4.98 -4.11 4.33 -1.54
g−1 -9.68 1.01 -24.45 -3.96
g+1 -14.61 -5.26 -11.89 -0.31
g−2 9.15 -6.96 7.41 -3.06
g+2 -21.78 14.69 -18.77 1.98
λ−1 0.20 -0.11 0.28 -0.02
λ+

1 1.58 -0.53 1.34 -0.09
λ−2 -3.79 2.80 -3.28 1.18
λ+

2 -0.20 0.47 -0.18 0.05
α -11.32 7.81 -9.99 1.26

Table S3: Sensitivity of forb and grass densities at the initial moment of the cycle to parameter perturbations.
The superscript of Ni is “−” if the initial moment of the cycle is a bad year, and “+” if it is a good year.

Step 5. To obtain the z j from Eq. (S6), we need the sum of the growth rates for the two points
of the cycle. This is given by the left hand side of Eq. (S4). We then take the derivative of this
expression with respect to each parameter in turn and substitute numerical values from Table S1
and Eq. (S5) into the results to get the z j. Again, two different sets of results emerge depending on
whether we designate t = 0 to be a bad or a good year. Table S2 contains the results.

Step 6. The cycle’s sensitivity to each parameter can now be obtained via Eq. (S7). That is, if
t = 0 is a bad year, we multiply the vector z−j (given in Table S2) by the inverse of the matrix a−i j
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times minus one. Since the sensitivity σi is given by the derivative of the densities divided by the
densities (Eq. S6), we multiply the result by N−i (given in Eq. S5) to obtain dNi(0)/dE. If t = 0 is a
good year, then we multiply z+j by the inverse of a+i j and then multiply by minus one times N+

i . See
Table S3 for all sensitivity values.

As a final remark, we emphasize again that coexistence in this model is maintained purely
by environmental fluctuations. Using the framework and terminology of Chesson, coexistence
is maintained by pure storage effect (Chesson & Warner 1981, Chesson 1994, 2000). Relative
nonlinearity is not operating because R(t) is a linear function of the population densities (Eq. S8),
and fluctuation-independent mechanisms are also not operating because in the absence of fluctuations
there is just a single regulating factor and therefore no coexistence.∗ Therefore the only stabilizing
mechanism is the temporal storage effect. We highlight that our sensitivity approach to understanding
coexistence differs from Chesson’s in that Chesson uses the invader’s long-term growth rate to see
whether coexistence is possible via mutual invasibility, while the sensitivity approach quantifies
coexistence via the range of parameters that will allow for it. See Barabás et al. (2012, Appendix 3)
and Barabás & Ostling (2013, Section 4) for the precise mathematical relationship between the two
frameworks.

∗A single regulating factor means the impact and sensitivity vectors are confined to a one-dimensional space. The
volume spanned by the vectors of more than one species is therefore necessarily zero, leading to loss of robustness and
the breakdown of coexistence.
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The tolerance-fecundity tradeoff model

Model description

Consider a set of sites, each of which may be occupied by a single sessile individual. The sites vary
in the local stress level sa, where a runs from 1 to M: s1 is the stress level of the least stressful site
and sM is that of the most stressful, with various gradations in between (by choosing a sufficiently
large M, the classification of stress levels can be made arbitrarily fine-grained). Individuals produce
seeds that disperse into all sites with a uniform probability distribution. Their fecundities are high
enough that no site remains empty after reproduction. Once a seed reaches a vacant site, it has to
survive the local stress conditions. Among the seeds that do survive, a lottery draw decides who
wins the site. Regardless of stress level, once an individual wins a site, it cannot be displaced except
by natural death happening at a species-specific mortality rate.

Assuming that the community consists of S species, this model may be written as

dNi,a

dt
= fiNiQi(sa)−miNi,a (i = 1 . . .S), (S16)

where Ni,a is the number of sites of stress level sa occupied by species i, fi is species i’s per capita
rate of seed production, mi is the adult mortality rate of species i, Qi(sa) is the probability that one
of species i’s seeds fall on a site of stress level sa and recruits there, and Ni is the total number of
sites species i occupies, i.e.

Ni =
M

∑
a=1

Ni,a. (S17)

The per-seed probability of successful recruitment Qi(sa) is the product of three independent
probabilities. First, we need to calculate the probability G(sa) that a seed arrives at an empty site of
stress level sa. This is given by

G(sa) =
c(sa)−∑S

i=1 Ni,a

∑M
b=1 c(sb)

, (S18)

where c(sa) is the number of sites of stress level sa, so the numerator expresses the number of
sites of stress sa that are not yet occupied, and the denominator is simply the total number of sites
altogether. Second, once a seed arrives at a site, it has to survive the local stress level. Let us
denote the probability that species i’s seed survives stress level s by Ti(s) and call it the tolerance
function (Figure S1A). It is assumed to be a decreasing function of stress level, and it is also
assumed that species with higher fecundities fi are less tolerant of stress, which is the essence of the
tolerance-fecundity tradeoff (Muller-Landau 2010, D’Andrea et al. 2013). Third, from the pool of
seeds that arrived at a site of stress level sa and survived, one is chosen via lottery draw to win the
site. Let F(sa) be the total number of seeds that survive on a site of stress level sa. Then 1/F(sa) is
the probability of winning the lottery draw. But F(sa) is simply given by

F(sa) =
∑S

k=1 fkNkTk(sa)

∑M
b=1 c(sb)

, (S19)
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the total number of surviving seeds divided by the total number of sites. Therefore, Qi(sa) may be
written

Qi(sa) = G(sa)Ti(sa)
1

F(sa)
= Ti(sa)

c(sa)−∑S
i=1 Ni,a

∑S
k=1 fkNkTk(sa)

. (S20)

Substituting this expression into Eq. (S16) yields

dNi,a

dt
= fiNiTi(sa)

c(sa)−∑S
i=1 Ni,a

∑S
k=1 fkNkTk(sa)

−miNi,a. (S21)

Let us cast this model equation in the form of traditional structured population models:

dNi,a

dt
=

M

∑
b=1

(
fiTi(sa)

c(sa)−∑S
i=1 Ni,a

∑S
k=1 fkNkTk(sa)

−miδab

)
Ni,b, (S22)

where we used Eq. (S17) in the first term on the right hand side, and the δab in the second term
is the identity matrix, equal to 1 if a = b and to 0 otherwise. The expression in parentheses is the
projection matrix Ai,ab of species i, multiplying the stage distribution vector Ni,b:

Ai,ab = fiTi(sa)
c(sa)−∑S

i=1 Ni,a

∑S
k=1 fkNkTk(sa)

−miδab. (S23)

The model therefore describes a community of interacting structured populations in continuous time,
where the ath stage class of species i measures the number of sites of stress level sa that species i
occupies.

Sensitivity analysis

For the tolerance-fecundity tradeoff model we are only performing qualitative sensitivity analysis,
i.e., we calculate the impact and sensitivity vectors and the volumes they span but do not evaluate
the full sensitivity formula.

Step 0. As demonstrated elsewhere numerically (D’Andrea et al. 2013), this model converges to
a stable equilibrium state. We therefore wish to analyze the sensitivity of this fixed point, generated
by the model which is in continuous time and involves population structure. The appropriate
sensitivity formulas are therefore given by

σi =
dNi

dE
, ai j = ∑

µ

(
∑
a,b

vi,a
∂Ai,ab

∂Rµ
wi,b

)

︸ ︷︷ ︸
Si,µ

(
∑
c

∂Rµ

∂N j,c
w j,c

)

︸ ︷︷ ︸
I j,µ

, z j = ∑
a,b

v j,a
∂A j,ab

∂E
w j,b (S24)

(Szilágyi & Meszéna 2009, Barabás et al. 2014), where vi,a and wi,a are the ath component of the
left and right leading eigenvectors of Ai,ab, respectively. Note that these are simplified expressions;
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the fully general form (which we do not need here) is found in Box 3 of the main text or in Barabás
et al. (2014, Eq. 29). For these formulas to hold, the normalization conditions

M

∑
a=1

wi,a = 1,
M

∑
a=1

vi,awi,a = 1 (S25)

have to be observed for all i. Biologically, since Eq. (S24) is evaluated at equilibrium, the left
leading eigenvector is the reproductive value vector while the right leading eigenvector is the stable
stage distribution.

In general we would need to solve the model for the equilibrium state. This model is complicated
enough that this would only be possible using numerical simulations. However, as we will see,
explicit knowledge of the equilibrium state is not needed to draw useful qualitative conclusions
about the behavior of this system.

Step 1. We choose the regulating factors. Notice that the Ai,ab depend on the densities only
through the fraction in the first term of Eq. (S23). Therefore a natural choice for the regulating
factors is

R(sa) =
c(sa)−∑S

i=1 Ni,a

∑S
k=1 fkNkTk(sa)

=
G(sa)

F(sa)
, (S26)

which is the density-dependent factor in Qi(sa). The projection matrices then read

Ai,ab = fiTi(sa)R(sa)−miδab, (S27)

which is density-independent if we keep R(sa) artificially fixed for all a, i.e., this is indeed a proper
choice for the regulating factors.

In this model, space is the only limiting resource. However, space is not homogeneous, as sites
differ in stress level. One therefore has to measure crowding for each stress level separately, resulting
in M different regulating factors, the R(sa) for every a. If the gradation of various stress levels is
infinitely fine-grained (i.e., we have a smooth stress gradient), M→ ∞ and we have infinitely many
regulating factors, in perfect analogy with a resource continuum.

Step 2a. We first calculate the sensitivity vectors, and then the impact vectors (Step 2b). From
Eq. (S24), the sensitivity of the ith species to the µth regulating factor reads

Si,µ =
M

∑
a=1

M

∑
b=1

vi,a
∂Ai,ab

∂R(sµ)
wi,b. (S28)

The derivative can be calculated directly using Eq. (S27):

∂Ai,ab

∂R(sµ)
=

∂
∂R(sµ)

(
fiTi(sa)R(sa)−miδab

)
= fiTi(sa)δaµ . (S29)

To evaluate the eigenvectors of Ai,ab, notice first that the second term on the right hand side of
Eq. (S27) is proportional to the identity matrix and does not influence the eigenvectors. Therefore,
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only the first term (let us denote it by Uab) needs to be considered for calculating eigenvectors. This
first term can also be written Uab = gahb, where ga = fiTi(sa)R(sa) and hb = 1 (each component of
hb is equal to 1). Such a matrix has only one right and corresponding left eigenvector (given by ga

and hb themselves) such that their corresponding eigenvalue is nonzero. Indeed, for any vector xa,

M

∑
b=1

Uabxb =
M

∑
b=1

gahbxb = ga

(
M

∑
b=1

hbxb

)
, (S30)

therefore xa = ga is the only right eigenvector with a nonzero eigenvalue. Similarly, ha is the only
left eigenvector with a nonzero eigenvalue, because for any vector xa,

M

∑
b=1

xbUba =
M

∑
b=1

xbgbha = ha

(
M

∑
b=1

gbxb

)
. (S31)

From this it is also clear that the nonzero eigenvalue itself is given by ∑M
a=1 gaha. As both ga

and ha are, in our case, vectors with positive components, this eigenvalue must be some positive
number. This means that, since all the other eigenvalues are zero, this eigenvalue is the leading one.
Therefore, its left and right eigenvectors must correspond to the reproductive value and the stable
stage distribution, respectively.

The stable stage distribution is then proportional to ga = fiTi(sa)R(sa):

wi,a = qi fiTi(sa)R(sa), (S32)

where

qi =

(
M

∑
a=1

fiTi(sa)R(sa)

)−1

(S33)

ensures proper normalization. Similarly, since ha = 1, the properly normalized left eigenvector is

vi,a = 1 (S34)

for all species. Using Eqs. (S29), (S32), and (S34), the sensitivity vectors can now be calculated
from the definition Eq. (S28):

Si,µ =
M

∑
a=1

M

∑
b=1

vi,a
∂Ai,ab

∂R(sµ)
wi,b =

M

∑
a=1

M

∑
b=1

fiTi(sa)δaµqi fiTi(sb)R(sb)

=
M

∑
a=1

fiTi(sa)δaµqi

(
M

∑
b=1

fiTi(sb)R(sb)

)

︸ ︷︷ ︸
1/qi

=
M

∑
a=1

fiTi(sa)δaµ = fiTi(sµ).
(S35)

In words, the sensitivity vector of species i is its tolerance function weighted by its fecundity. This
can be evaluated without any knowledge of the system’s dynamics or current state.
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Step 2b. The formula for the impact vector of the jth species on the µth regulating factor in
structured community models is given in Eq. (S24) as

I j,µ =
M

∑
a=1

∂R(sµ)

∂N j,a
w j,a. (S36)

Using Eq. (S32), this becomes

I j,µ =
M

∑
a=1

∂R(sµ)

∂N j,a
q j f jTj(sa)R(sa). (S37)

We calculate the partial derivative:

∂R(sµ)

∂N j,a
=− δaµ

∑S
k=1 fkNkTk(sµ)

− c(sµ)−∑S
i=1 Ni,µ(

∑S
k=1 fkNkTk(sµ)

)2
∂

∂N j,a

(
S

∑
k=1

fk

(
M

∑
b=1

Nk,b

)
Tk(sµ)

)

︸ ︷︷ ︸
f jTj(sµ )

=− δaµ

∑S
k=1 fkNkTk(sµ)

− c(sµ)−∑S
i=1 Ni,µ(

∑S
k=1 fkNkTk(sµ)

)2 f jTj(sµ),

(S38)

or, using Eq. (S26) in the second term,

∂R(sµ)

∂N j,a
=−

(
δaµ

∑S
k=1 fkNkTk(sµ)

+
f jTj(sµ)R(sµ)

∑S
k=1 fkNkTk(sµ)

)
. (S39)

The impact vectors then read

I j,µ =−
M

∑
a=1

(
δaµ

∑S
k=1 fkNkTk(sµ)

+
f jTj(sµ)R(sµ)

∑S
k=1 fkNkTk(sµ)

)
q j f jTj(sa)R(sa), (S40)

which can be written as

I j,µ =−q j f jTj(sµ)R(sµ)

∑S
k=1 fkNkTk(sµ)

− f jTj(sµ)R(sµ)

∑S
k=1 fkNkTk(sµ)

q j

M

∑
a=1

f jTj(sa)R(sa). (S41)

Since the last sum is simply equal to 1/q j due to Eq. (S33), the impact vectors are given by

I j,µ =−(q j +1) f jTj(sµ)R(sµ)

∑S
k=1 fkNkTk(sµ)

. (S42)

Step 3a. Here we calculate the volume spanned by the sensitivity vectors. In doing so, it is
cleanest to assume there is an arbitrarily fine gradation of stress levels, therefore the sensitivity
vector Si,µ = fiTi(sµ) becomes a smooth sensitivity function Si(µ) = fiTi(µ). The volume VS
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Figure S1: Panel A shows the tolerance functions of two species (solid and dashed curves). The abscissa
represents stress, ranging from s1 (minimum level) to sM (maximum level). The ordinate is the probability
that a seed survives the given stress level. The tolerance functions are sigmoid curves with a relatively abrupt
transition from the tolerant to the intolerant regime. The tolerance-fecundity tradeoff is implemented by
making the species with the higher fecundity f less tolerant. Panel B shows the volume VS spanned by
the sensitivity vectors of two species, as a function of their fecundities. The volume is largest where one
species has a high fecundity and the other an intermediate one. Both species possessing similar fecundities
leads to small volumes. Since a small volume is sufficient for making coexistence oversensitive and therefore
unrealistic, it is only in the high-volume regions where coexistence is even a possibility.

(which is an area in our case because we consider S = 2) spanned by two sensitivity functions S1(µ)
and S2(µ) is given by Eq. (S69) as the determinant of the matrix of scalar products, taking its
absolute value and square root (see the Appendix):

VS =
√√√√
∣∣∣∣∣

(∫ sM

s1

S2
1(µ)dµ

)(∫ sM

s1

S2
2(µ)dµ

)
−
(∫ sM

s1

S1(µ)S2(µ)dµ
)2
∣∣∣∣∣. (S43)

The particular form we use for the tolerance function is

Ti(s) =
tanh

(
τ(sM− fi− s)

)
+1

2
, (S44)

shown on Figure S1A.
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We can evaluate the integrals. The indefinite integral of S2
i (µ) is

∫
S2

i (µ)dµ = f 2
i

∫
T 2

i (µ)dµ =
f 2
i

4

∫ (
tanh

(
τ(sM− fi−µ)

)
+1
)2 dµ

=− f 2
i

4τ
(tanh(τ ( fi +µ− sM))+2log(cosh(τ ( fi +µ− sM)))−2aµ)+ const,

(S45)

as is easily verified by taking the expression’s derivative with respect to µ . The definite integral then
reads

∫ sM

s1

S2
i (µ)dµ =

f 2
i

4τ
(
− tanh(τ ( fi))−2log(cosh(τ ( fi)))

+ tanh(τ ( fi + s1− sM))+2log(cosh(τ ( fi + s1− sM)))+2τsM−2s1τ
)
.

(S46)

The other integral is
∫
S1(µ)S2(µ)dµ =

f1 f2

4τ
(
− log(cosh(τ ( f1 +µ− sM)))− log(cosh(τ ( f2 +µ− sM)))

+coth(( f1− f2)τ)(log(cosh(τ ( f2 +µ− sM)))− log(cosh(τ ( f1 +µ− sM))))+2µτ
)

+const.

(S47)

Its definite integral is then
∫ sM

s1

S1(µ)S2(µ)dµ =
f1 f2

4τ
(
− log(cosh(τ ( f1 + sM− sM)))− log(cosh(τ ( f2)))

−coth(( f1− f2)τ) log(cosh(τ ( f1)))+ coth(( f1− f2)τ) log(cosh(τ ( f2)))

+ log(cosh(τ ( f1 + s1− sM)))+ log(cosh(τ ( f2 + s1− sM)))

+coth(( f1− f2)τ) log(cosh(τ ( f1 + s1− sM)))

−coth(( f1− f2)τ) log(cosh(τ ( f2 + s1− sM)))

+2τsM−2s1τ
)
.

(S48)

Substituting Eqs. (S46) and (S48) into Eq. (S43), we get an explicit expression forVS as a function
of the two fecundities f1 and f2:

VS = f1 f2

4τ

∣∣∣∣
(
− tanh(τ( f1 + s1− sM))+2(− log(cosh(τ( f1 + s1− sM)))

+ log(cosh( f1τ))+ s1τ− sMτ)+ tanh( f1τ)
)
(− tanh(τ( f2 + s1− sM))

+2(− log(cosh(τ( f2 + s1− sM)))+ log(cosh( f2τ))+ s1τ− sMτ)+ tanh( f2τ))
−
(
− log(cosh(τ( f1 + s1− sM)))− log(cosh(τ( f2 + s1− sM)))

+coth(( f1− f2)τ)
(
− log(cosh(τ( f1 + s1− sM)))+ log(cosh(τ( f2 + s1− sM)))

+ log(cosh( f1τ))− log(cosh( f2τ))
)
+ log(cosh( f1τ))+ log(cosh( f2τ))

+2s1τ−2sMτ
)2
∣∣∣∣
1/2

.

(S49)
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This is the function plotted on Figure S1B, with s1 = 0, sM = 10, and τ = 1.
Step 3b. The volume spanned by the impact vectors. As Eq. (S42) depends on the stationary

densities Nk, the volumeVI cannot be evaluated without knowing these quantities. However, this
volume is not needed for drawing qualitative conclusions based on the sensitivity vectors only, for
the following reason.

In Eq. (S42), Tj(sµ) and R(sµ) in the numerator are are quantities whose values fall between
0 and 1. The denominator expresses the seed rain, and since we have made the assumption at the
outset that the seed rain contains at least one seed per empty site, the denominator cannot be smaller
than 1. The magnitude of any one component of the jth sensitivity vector therefore cannot exceed
(q j +1) f j. There is no reason why this factor should be very large: f j is a rate and so proportional
to the log of the annual seed production, while q j is simply a normalizing constant. This means that
every component of each impact vector is bounded in magnitude. Therefore, the volume spanned by
these vectors will also be bounded.

Since robustness is determined byVIVS, this observation means that whenever the volume
spanned by the sensitivity vectors is small, robustness will also necessarily be small, becauseVI is
bounded from above and so cannot compensate for a smallVS.

Moreover, we can see from Eq. (S42) that I j,µ is actually proportional to S j,µ = f jTj(sµ),
thereforeVI will be large/small whereverVS is large/small.

This means that the volumes spanned by the sensitivity vectors are sufficient to determine the
robustness of coexistence in the sense that wherever the sensitivity volume is small, coexistence
cannot be expected to hold.
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The Gross model

Model description

In the model of Gross (2008), there is a single resource and several consumer species. The consumers
have facilitative effects on one another: an increase in the abundance of one species reduces the
death rate of another. The general form of these death rates is chosen to be

mi = m0
i −di

(
1− exp

(
−

S

∑
k=1

θikNk

))
, (S50)

where S is the total number of consumer species, m0
i is the baseline mortality of species i, di is the

maximum advantage it can gain from facilitation (we assume di ≤ m0
i ), Nk is the density of species

k, and θik is a matrix of scaling factors, measuring the benefit species k confers to species i. Since
there is no self-facilitation, the diagonal elements are all zero: θii = 0 for all i = 1 . . .S. Using these
mortalities, the model equations are written

ri =
1
Ni

dNi

dt
= fi(R)−mi (i = 1 . . .S) (S51)

for the species (ri is the per capita growth rate of species i as always), and

dR
dt

= g(R)−
S

∑
i=1

ci fi(R)Ni (S52)

for the resource. Here fi(R) is the per capita resource-dependent growth rate of species i, the mi are
given by Eq. (S50), R is the amount of resource in the system, g(R) is the resource supply rate, and
the ci measure the amount of resource species i has to consume to produce one unit of biomass.

The form of the mortalities in Eq. (S50) is fairly general. Gross (2008) made the assumption of
hierarchical facilitation to narrow it further down. This is implemented by choosing θik to be zero
for k ≥ i and a positive constant otherwise:

mi = m0
i −di

(
1− exp

(
−θ ∑

k<i
Nk

))
. (S53)

Notice that, since the sum only runs through species k < i, species i is facilitated only by those who
have a lower species index: species 1 is not facilitated by anyone, species 2 is facilitated by species
1, species 3 is facilitated by species 1 and 2, and so on. Also, the advantage a species receives (if
any) from a single other species is always the same, θ .

Sensitivity analysis

Here we perform qualitative sensitivity analysis again, calculating the product of the volumes
spanned by the impact and sensitivity vectors, and showing that this product converges to zero for
large S.
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Step 0. It was already proved by Gross (2008) that this system has a stable all-positive fixed
point. In the two-species case, limit cycles were also observed. While they cannot be ruled out for
S > 2, they have not been observed in numerical simulations. Even if there happen to be alternative
attractors in phase space, we will concentrate on the sensitivity of the nontrivial fixed point only.
Fortunately, as we will see, an explicit knowledge of this equilibrium state will not be needed for
our analysis.

Since the model is unstructured, continuous time, and we are analyzing the sensitivity of a fixed
point, the appropriate sensitivity formulas are given by

σi =
dNi

dE
, ai j = ∑

µ

∂ ri

∂Rµ︸︷︷︸
Si,µ

∂Rµ

∂N j︸︷︷︸
I j,µ

, z j =
∂ r j

∂E
(S54)

(Meszéna et al. 2006).
Step 1. We need to designate the regulating factors. We make the following choice:

R1 = R,

Rµ = exp

(
−θ ∑

k<µ
Nk

)
(µ = 2 . . .S).

(S55)

Note that we could have made other choices as well—we could have made Rµ>1 = ∑k<µ Nk or
even just Rµ>1 = Nµ , as all these choices satisfy the criterion that keeping their values artificially
fixed leads to the density-independence of the growth rates ri. However, performing the necessary
calculations may be easy with some choices and hard or even impossible with others. In our case, it
turns out that Eq. (S55) lends itself to analytical treatment much better than the other choices (see
below). The model equations, rewritten in terms of the regulating factors, are

r1 = f1(R1)−m0
1,

ri = fi(R1)−m0
i +di (1−Ri) (i = 2 . . .S).

(S56)

We can see that our choice of regulating factors is valid, because fixing their values would make the
per capita growth rates density-independent.

Step 2. The impact vectors I j,µ and sensitivity vectors Si,µ are calculated using Eq. (S54):

I j,µ =
∂Rµ

∂N j
=

(
∂R1

∂N j
,0, . . . ,0,−θR j+1︸ ︷︷ ︸

µ= j+1

,−θR j+2, . . . ,−θRS

)
, (S57)

Si,µ =
∂ ri

∂Rµ
=

(
∂ fi

∂R1
,0, . . . ,0, −di︸︷︷︸

µ=i

,0, . . . ,0
)
, (S58)

where all quantities are evaluated at equilibrium.
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Step 3. We calculate the two volumes. This is where our particular choice for the regulating
factors proves useful: it would be impossible to do the calculation using other choices. The volumes
are calculated via Eq. (S70) (see the Appendix). The impact volume reads

VI =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det




∂R1
∂N1

−θR2 −θR3 · · ·
∂R1
∂N2

0 −θR3 · · ·
∂R1
∂N3

0 0 · · ·

...
...

...
. . .




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣
∂R1

∂NS

∣∣∣∣θ S−1
S

∏
i=2
Ri, (S59)

and the sensitivity volume is

VS =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det




∂ f1
∂R1

0 0 · · ·
∂ f2
∂R1

−d2 0 · · ·
∂ f3
∂R1

0 −d3 · · ·

...
...

...
. . .




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣
∂ f1

∂R1

∣∣∣∣
S

∏
i=2

di. (S60)

The especially simple form of these matrices allowed for the direct calculation of the determinants.
The product of these volumes is

VIVS =
∣∣∣∣

∂ f1

∂R1

∂R1

∂NS

∣∣∣∣θ S−1

(
S

∏
i=2

di

)(
S

∏
i=2
Ri

)

=

∣∣∣∣
∂ f1

∂R1

∂R1

∂NS

∣∣∣∣θ S−1

(
S

∏
i=2

di

)
e−θN1e−θ(N1+N2) · · ·e−θ(N1+···+NS−1)

=

∣∣∣∣
∂ f1

∂R1

∂R1

∂NS

∣∣∣∣θ S−1

(
S

∏
i=2

di

)
e−θ
(
(S−1)N1+(S−2)N2+···+NS−1

)
.

(S61)

Let N be the smallest of the equilibrium densities N1,N2, . . . ,NS−1. Then we can write the inequality

VIVS ≤
∣∣∣∣

∂ f1

∂R1

∂R1

∂NS

∣∣∣∣θ S−1

(
S

∏
i=2

di

)
e−θ
(
(S−1)N+(S−2)N+···+N

)

=

∣∣∣∣
∂ f1

∂R1

∂R1

∂NS

∣∣∣∣θ S−1

(
S

∏
i=2

di

)
e−NθS(S−1)/2.

(S62)

This expression asymptotically depends on the number of species as exp(−NθS2/2). It converges
to zero faster than exponential in the number of species (unless N decreases even faster—but in
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that case the equilibrium population densities would soon get so close to zero that, from a practical
point of view, extinctions would be inevitable). Then, due to the above inequality, the product of the
volumes spanned by the impact and sensitivity vectors must also converge to zero at least as fast as
exp(−NθS2/2).

Note also that in this model, the product of the volumes is exactly equal to the determinant of
the generalized community matrix ai j in absolute value. From Eq. (S54), this determinant can be
written

det(ai j) = det

(
S

∑
µ=1

∂ ri

∂Rµ

∂Rµ

∂N j

)
= det

(
∂ ri

∂Rµ

)
det
(

∂Rµ

∂N j

)
= det

(Si,µ
)

det
(I j,µ

)
, (S63)

where we used two facts: 1) that the number of regulating factors happens to be equal to the number
of species and therefore I j,µ and Si,µ are square matrices, and 2) that the determinant of a product of
square matrices is the product of the determinants. Due to the well-known geometrical interpretation
of the determinant (see also the Appendix),

∣∣det(ai j)
∣∣=
∣∣det

(I j,µ
)

det
(Si,µ

)∣∣=VIVS, (S64)

which is what we wanted to show.

The bound on the number of coexisting species

We have shown above that the productVIVS—and therefore, due to Eq. (S64), the determinant of
ai j—converges to zero as S increases. It is tempting to jump to the conclusion that coexistence of
a large number of species is extremely unlikely. Some additional care is needed, however: since
introducing a new species will also increase the dimensionality of the problem,VIVS approaching
zero does not automatically imply decreasing robustness.

To illustrate why, consider S noninteracting species. Assume each of them may have a mortality
rate between 1 and 2, and only species with mortality lower than 1.5 are viable. The parameter
range allowing for the persistence of a single species is 0.5. For S independent species, the total
parameter volume allowing for the persistence of all species is then equal to 0.5S, which converges
to zero for large S. Yet, the robustness of the community need not be vanishing: if, for instance, all
species have a mortality of 1.25, then no species will go extinct in response to small perturbations of
any of these mortalities. Indeed, it is intuitively obvious that the number 0.5 is the “true” measure of
robustness here, which is the Sth root of the total volume 0.5S.

To avoid measuring the trivial artifact of parameter volumes shrinking due to an increasing
number of species, we observe from Eq. (S62) that the Sth root of the determinant still converges to
zero exponentially:

S
√
VIVS ∼ S

√
θ S exp(−NθS2/2) = θ exp(−NθS/2)→ 0 (S65)

(only the leading term in S was kept in the exponents). That is, the robustness of the community is
still lost for large S, even when accounting for the above trivial effect.
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The above intuitive argument can be pitched more formally. The determinant of a matrix is the
product of its eigenvalues. The eigenvalues describe the robustness of the community in specific
directions, while their product measures overall robustness. An eigenvalue that is nearly zero means
that the corresponding eigendirection is extremely sensitive, since a small perturbation could push
that eigenvalue over to the right half plane, destabilizing the system. If the product of the eigenvalues
approaches zero, this need not mean that any one particular eigenvalue does—e.g., if each eigenvalue
is equal to 0.5, none of them are very small, but their product does converge to zero for large S. But
now let us consider not just the determinant, but the Sth root of the determinant. This quantity is
simply the geometric mean of the eigenvalues. If the geometric mean goes to zero, then the smallest
eigenvalue must also approach zero, as the geometric mean is necessarily greater than or equal to
the smallest eigenvalue.† That is, when the Sth root of the determinant becomes small, one can be
certain that robustness is lost in some of the individual directions as well. In our case, we can see
from Eq. (S65) that this is exactly what happens.

From Eq. (S65) we can see that S cannot be much larger than 1/(Nθ), otherwise the likelihood
of coexistence becomes exponentially small. To make this conclusion more transparent, let us
consider a dimensional analysis of robustness. If N is measured in units of biomass, then θ is of
dimension inverse biomass. Their product Nθ is then a dimensionless quantity. We may rescale
Eq. (S65) by multiplying it with N:

S
√
VIVS ∼ Nθ exp(−NθS/2) . (S66)

This expression will still converge to zero whenever S is large, and—unlike Eq. (S65)—is a
dimensionless measure of robustness. It clearly converges to zero exactly when Eq. (S65) does; all
we have done is a rescaling of the expression by the constant N. In this form it is clear that robustness
is lost whenever the dimensionless quantity Nθ is much larger or much smaller than 1. Therefore,
S cannot be much larger than 1. (See also Meszéna et al. 2006, Eq. 52 for the calculation of the
probability of coexistence as a dimensionless quantity, using the non-dimensionless determinant.)

Figure S2 plots the right hand side of Eq. (S66) for fixed values of S as a function of Nθ . The
curves reach their unique maximum at Nθ = 2/S; the value at the maximum is 2/(eS), as is easily
seen by differentiating Eq. (S66) with respect to Nθ and requiring the result to be zero. Therefore

S
√VIVS goes to zero with the inverse of S even if one manages to fine-tune the parameters such
that Nθ remains at its optimal value for each S—a fairly unrealistic situation to begin with.

Our take-home message is that the coexistence of more than a few species through the cascade
of facilitation in the Gross model is a highly unlikely outcome. Moreover, this result was obtained
by a simple argument which did not take variation in specific parameters into account. More specific
evaluation of the coexistence bandwidth for any fixed value of the species number could be carried
out like we did in the case of the Levine–Rees model.

†One might worry that the eigenvalues may be complex numbers. How do we interpret “smaller” or “greater” in this
case? The problem is easily resolved: since ai j is necessarily a real matrix, its eigenvalues come in complex conjugate
pairs, whose product is (a+ ib)(a− ib) = a2 +b2 = (length)2. So in this case it is the length of the shortest eigenvalue
that will approach zero.
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Figure S2: The robustness S
√VIVS as a function of the (scaled) facilitative advantage Nθ for various values

of S, based on Eq. (S66). The most robust scenario always happens at an intermediate Nθ value.

Appendix: the volume spanned by a set of vectors

Suppose we are given a set of S vectors, with Wi,µ referring to the µth entry of the ith vector
(i = 1 . . .S). We assume without loss of generality that µ = 1 . . .L, i.e., each vector has L entries (L
is not necessarily equal to S). To calculate the volumeVW of the parallelotope spanned by these
vectors, define the following matrix of scalar products:

Wi j =
L

∑
µ=1
Wi,µW j,µ . (S67)

Note that, in case µ is a continuous as opposed to a discrete index (i.e., when we have functions
Wi(µ) instead of vectorsWi,µ ), the summation above becomes integration with respect to µ:

Wi j =
∫ µ1

µ0

Wi(µ)W j(µ)dµ, (S68)

where µ0 and µ1 are the appropriate limits of integration. Using Wi j, the volumeVW may now be
calculated with the help of the so-called Gram determinant det(Wi j) (Gantmacher 1959):

VW =
√∣∣det(Wi j)

∣∣. (S69)

There are two special cases for which this expression can be simplified. First,VW = 0 whenever
L < S. Second, for L = S, the formula simplifies to

VW =
∣∣det

(Wi,µ
)∣∣ (S70)

(Meszéna et al. 2006, Appendix C), whereWi,µ is treated as a (square) matrix with row index i and
column index µ .
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