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Abstract

Question: Is the coexistence of a continuum of species or ecological types possible in real-world
communities? Or should one expect a limit to species similarity?

Mathematical Methods: We study whether the coexistence of species in a continuum of
ecological types is (a) dynamically stable (against changes in population densities) and (b)
structurally robust (against changes in population dynamics). Since most of the reviewed
investigations are based on Lotka—Volterra models, we carefully explain which of the presented
conclusions are model-independent.

Mathematical Conclusions: Seemingly plausible models with dynamically stable continuous-
coexistence solutions do exist. However, these models either depend on biologically unrealistic
mathematical assumptions, e.g., nondifferentiable ingredient functions, or are structurally
unstable, i.e., destroyable by arbitrarily small modifications to those ingredient functions.
The dynamical stability of a continuous-coexistence solution, if it exists, requires positive
definiteness of the model’s competition kernel.

Biological Conclusions: The fundamental discreteness of species is a natural consequence
of the basic structure of ecological interactions, not of any model details. While the classical
expectation of limiting similarity is mathematically naive, it nevertheless provides an appro-
priate qualitative rule of thumb for understanding ecological community structures. Also in
a quantitative sense, limiting similarity effectively applies, but needs to be reinterpreted in
terms of the likelihood of coexistence: the probability of dynamically and structurally stable
coexistence diminishes dramatically when niche distances become too small relative to niche
widths.

Keywords: competition kernel; dynamical stability; kinked kernel; Lotka—Volterra models;
niche axis; structural robustness; structural stability

1 Introduction

It is an elementary fact of biology that species are — by and large — discrete entities. Why is this so?
The question has both an ecological and a genetic aspect (Maynard Smith and Szathmary 1995).
Here we are interested in the ecological one: does ecology dictate the discreteness of species?



Assumption of discrete niches would lead us to an answer of trivial “yes” without confronting the
real problem. Therefore, we will consider the possibility of species coexistence along a continuous
niche axis. For the purposes of this review, a species’ niche is described by its position in the trait
space that needs to be considered for determining the competitive effects between species. In this
review, we focus on one-dimensional trait spaces. To disregard the effects that genetics may bear on
this problem, we consider clonal reproduction only.

Investigations of coexistence along a niche axis were initiated by the seminal paper of MacArthur
and Levins (1967). They examined a Lotka—Volterra model with the assumption that the strength of
competition decreased as the difference in niche position. It was found that a minimal niche distance
between two species was needed to allow a third one with a niche position in the middle of the two
to invade the community. They summarized their results by coining the term “limiting similarity”.
However, more careful analysis revealed the lack of a clear minimum to species dissimilarity
(Abrams 1975, 1983; May 1973, ch. 6), where species similarity is measured by the distance
between two species along the niche axis. May and MacArthur (1972) resorted to environmental
stochasticity to rescue the idea of limiting similarity, a result that was questioned by Abrams (1976)
and Turelli (1978). Moreover, even if the argument by May and MacArthur were correct, it would
imply that that limiting similarity could not be expected to exist in the absence of such stochasticity
(Rosenzweig 1995, p. 127).

Meanwhile, the attention of ecologists began to broaden beyond analyses of Lotka—Volterra
models, which became regarded as being overly simplistic and as maintaining too little connection
with empirical reality (Schoener 1976, 1978). Instead, more mechanistic models became established
in research on population and community dynamics (e.g., Tilman 1982). These studies revealed
a significantly richer parameter-dependence of the possibility for coexistence, and often found
markedly different behavior relative to the Lotka—Volterra model (e.g., Abrams 1980a,b, 1998,
Abrams et al. 2008, Abrams and Rueffler 2009). In his hallmark review, Abrams (1983) concluded
that there was no such thing as a universal limit to similarity. He suggested that the relationship
between an appropriate measure of relative competitiveness of the species and their similarity in
resource use has to be studied on a model-to-model basis. The term “coexistence bandwidth” was
coined for the parameter range allowing coexistence by Armstrong and McGehee (1976). This range
was generally expected to shrink to zero when the difference in resource use disappears (Abrams
1983).

In an independent development, Roughgarden (1979, pp. 534-536) demonstrated the possibility
of continuous coexistence, involving infinitely many ecological types that are continuously dis-
tributed along a niche axis and yet stably coexist. His model was not meant to describe an ecological
community of species; instead, he interpreted the considered coexisting types as phenotypes within
a single species. It might be for this reason that Roughgarden’s result appears to have escaped the
attention of many community ecologists: it is not usually cited in discussions of limiting similarity.
This distinction is irrelevant, however, if we are considering the mathematical side of the problem.

Indeed, the model investigated by Roughgarden was mathematically identical to the one used
by MacArthur and Levins (1967). As the very same model that provided the original inspiration
for the notion of limiting similarity was thus shown also to produce continuous coexistence, it is



no surprise that no clear conclusion could be drawn about whether or not to expect a lower limit to
species similarity in nature. The possibility of continuous coexistence in the Lotka—Volterra model
seems to be in agreement with the lack of a universal limit of similarity, but at odds with the general
modeling experience of finding specific lower limits to similarity in specific ecological models.

Our goal is to offer a resolution to this potentially confusing situation. The last decade has seen a
renewed interest in the classical problem of coexistence. On the specific side, Lotka—Volterra models
have been reinvestigated by several authors using more sophisticated mathematical tools. After all,
the empirical relevance of Lotka—Volterra models aside, if we do not even sufficiently understand
the simplest of ecological models, we cannot possibly expect to understand more complicated ones.
On the general side, new mathematical possibilities have emerged for reaching model-independent
conclusions based on general mathematical conditions instead of model-specific assumptions. This
article reviews these new developments. We mostly concentrate on Lotka—Volterra models, to
explain all salient considerations in the simplest possible context. At the same time, we always
highlight when there are reasons to consider a result as being more general. In particular, the
Appendix presents a new result about the generic impossibility of continuous coexistence. In the
following section, we introduce our central concepts: we explain the important distinction between
the dynamical stability and structural robustness of coexistence, consider the scope of population
dynamics described by Lotka—Volterra models, and introduce the main model underlying our further
analyses. After reviewing and discussing existing results on the stability and structural robustness of
coexistence in the subsequent two sections, we close with a discussion of the general conclusions
these results enable us to draw.

2 Preliminaries

2.1 Dynamical stability and structural robustness of coexistence

In line with the classical research on species coexistence, we first concentrate on coexistence based
on dynamically stable fixed points in constant environments, before remarking on coexistence based
on nonequilibrium population dynamics in the next section.

A collection of species can coexist if their joint population dynamics has a dynamically stable
fixed point at which all species are present with positive density. This gives two conditions that
together are sufficient for ensuring coexistence: (1) the existence of an all-positive fixed point and
(2) its dynamical stability. The second condition ensures that small perturbations of the densities
away from the fixed point are damped, so that the densities return to the fixed point. Traditionally,
most theoretical studies of coexistence have concentrated on such conditions of dynamical stability.
However, as we see below, the mere existence of an all-positive fixed point is already a nontrivial
issue.

For structurally stable population dynamics, an all-positive fixed point, if it exists, does so
for a finite volume in the space of model parameters. The conditions under which this volume
shrinks to zero in parameter space (or in one of its subspaces) thus define a biologically important
reference case. To illustrate this point, we can consider as an example competing species without



niche segregation (with no equality of demographic parameters assumed). Generically, one of them
will win the competition, while all other species are destined to extinction. Still, in a theoretical
model, an all-positive neutral manifold can be brought into existence if the modeler artificially
fine-tunes the fitnesses of all species to be exactly equal (as population densities may drift along a
line made up of neutrally stable fixed points, adding demographic stochasticity to the model would
lead to the eventual extinction by drift of all but one species — but no extinctions will happen in the
deterministic limit). Naturally, such a precise equality of all fitnesses is a structural assumption that
is not plausible in the real world. If one were confronted with such a population dynamics a priori, it
would therefore be critical to check its robustness to a relaxation of this structural assumption. In the
considered example, this is straightforward: when the modeler gives even the tiniest advantage to any
one species, by increasing its fitness relative to those of the others, coexistence is lost. Accordingly,
the considered model is said not to be structurally stable.

In general, a fixed point is structurally unstable if an arbitrarily small perturbation of the model
parameters will qualitatively change its dynamics (e.g., Rosen 1970, Yodzis 1989; such parameter
perturbations are also referred to as “structural perturbations of the model”). To apply this criterion,
it must be appreciated that not all structural perturbations that are mathematically possible are
biologically plausible; the notion of structural stability as used in ecological theory is therefore
always implicitly referring to biologically plausible perturbations. The hallmark of structural
stability is that, for all parameters whose change is biologically realistic, a model’s dynamics is
qualitatively unchanged by any small parameter variation in the neighborhood of the parameter
combination describing the unperturbed model.

Applied to the question of coexistence, this means that both the existence and the dynamical
stability of the considered fixed point must be unchanged across an entire neighborhood of parameter
values surrounding the unperturbed model. The likelihood of coexistence in the real world is directly
related to this structural robustness: if the range of parameters allowing for coexistence, sometimes
called the “coexistence bandwidth” (Armstrong and McGehee 1976), is known, the probability of
coexistence can in principle be calculated from the empirical probability density of the parameter
values, by integrating the latter over the entire coexistence bandwidth. A vanishing coexistence
bandwidth therefore implies that coexistence is impossible, while a small coexistence bandwidth
implies that it is unlikely.

Owing to these similar, but subtly different biological implications, it is helpful to formally
distinguish between structural stability, a long-established notion in the mathematical theory of
dynamical systems, and what throughout this article we refer to as structural robustness. While any
finite range of parameters within which the dynamics is qualitatively unchanged makes a model
structurally stable, such coexistence has weak structural robustness whenever that range is small.
Whereas the lack of structural stability and the lack of structural robustness are hence equivalent, as
both refer to a vanishing parameter range, structural stability and structural robustness are not, as
they convey different information about a finite parameter range: the former is a binary notion that
just tells us that this range is finite, even though it may be extremely small, whereas the latter can be
weak or strong, depending on the actual range of a model’s parameters that leave the qualitative
dynamics unchanged relative to biologically relevant parameter ranges. It turns out that this extra
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Figure 1: Dynamical stability (upper row) and structural robustness (lower row) of coexistence for the
two-species competitive Lotka—Volterra model described in Box 1 (see also Fig. 12.3 in Krebs 2001). In each
panel, the population densities n; and ny of Species 1 and 2, respectively, vary along the axes. The tilted lines
are the zero-net-growth isoclines (ZNGlIs). The circles indicate the intersections of ZNGIs, and thus the fixed
points of the population dynamics; they are filled (open) when the fixed point is dynamically stable (unstable).
Arrows depict the qualitative flow of the dynamics. In the upper row, with | = r, = 1, the fixed point is
dynamically stable for ¢ < 1 (left column) and dynamically unstable for o > 1 (right column). In the middle
column, where o approaches 1 from below, the fixed point is still dynamically stable, but only weakly so,
as the smaller eigenvalue of the Jacobian matrix approaches 0. This is depicted with shorter arrows in the
weakly stable direction, i.e., in the direction of changes only affecting the relative density n; /n,. Notice that
dynamical stability remains strong in the direction of the joint density n; + n;. In the bottom row, r, changes
from 0.4 to 2.1 in increments of 0.1, representing a disadvantage, or advantage, of Species 2 relative to
Species 1, for which r| remains at 1: the ZNGI of Species 2 (parallel lines, with the lowest line corresponding
to rp = 0.4) and the resultant fixed point move in accordance with this changing relative advantage. Only
density combinations within the positive quadrant represent coexistence, provided they are dynamically stable.
Species 2 (Species 1) goes extinct when r, is too small (too large). Observe again the peculiarity of the
weakly stable case in the middle row: when o approaches 1 from below, the fixed point moves rapidly and
therefore remains in the positive quadrant only for a narrow range of r,. We call coexistence structurally
robust when the fixed point exists in the positive quadrant for a wide range of the parameters describing
relative advances/disadvantages. The figure therefore illustrates that structural robustness and dynamical
stability of coexistence are different yet related properties, and why weak dynamical stability or instability
imply low structural robustness.



information makes the notion of structural robustness considerably more biologically relevant and
informative than that of structural stability, which is why we consistently employ it throughout this
article.

Fig. 1 and Box 1 describe the concepts of dynamical stability and structural robustness for
the well-known two-species Lotka—Volterra model. This shows that concentrating exclusively on
dynamical stability would miss two important points: the sensitivity of the position of the fixed
point to changes in model parameters (i.e., structural robustness; middle column of Fig. 1) and the
fact that a dynamically stable fixed point is not necessarily all-positive (left and middle columns of
Fig. 1).

Box 1: Dynamical stability and structural robustness in two-species Lotka—Volterra
models

As a point of reference, here we discuss the dynamical stability and structural robustness of
coexistence in two-species competitive Lotka—Volterra models; see also Fig. 1. Lotka—Volterra
models for two species with population densities 7; and n; are given by the following dynamical
equations:

dn1
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dn,
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The density dependence of the growth rates f; and f> can also be conveniently expressed in
vector form:
f=r—an.

The solution for the equilibrium population densities is obtained by setting these growth rates to
zero, f = 0, which yields
1. _ adj(a) r

det(a) ’

where adj(a) is the adjoint of the matrix a and det(a) is its determinant (Cramer’s rule). Note
that det(a) = 0 when the two species are identical in their effects, i.e., a;; = a1z and az; = ap.

The requirement for the unique existence of a fixed point n is det(a) # 0. As the determinant
appears in the denominator, the fixed point becomes sensitive to changes in r for small det(a).
Only a small range of the parameters r; and r, then allows the fixed point to remain in the
biologically meaningful positive quadrant, n > 0. Therefore, structurally robust existence of the
positive solution requires det(a) to be not only non-zero, but significantly different from zero.
For det(a) = 0, coexistence is structurally unstable: it occurs only for one special combination
of r; and rs.
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The Jacobian matrix determining the dynamical stability (Otto and Day 2007, p. 306) of the
fixed point nis A = (A;;) with
Aij = 8(dan’;idt) = fi6ij — aijni = —a;jn;,
where the Kronecker symbol 6;; equals one if i = j and zero otherwise. Notice that the term
fi6ij vanishes, since the partial derivatives comprising A have to be taken at the fixed point n,
where f; = 0. The two eigenvalues of A describe the exponential rates at which perturbations
away from the fixed point in the direction of the corresponding two eigenvectors grow or shrink.
Therefore, the fixed point is dynamically stable if and only if both eigenvalues of A are negative.
Equivalently, the eigenvalues of a must be positive for dynamical stability.

As the determinant is the product of the eigenvalues, dynamical stability requires det(a) to
be positive. When det(a) approaches zero, indicating a gradual loss of structural robustness,
and becomes negative, dynamical stability is also lost. For negative determinants, the existence
of the fixed point can be structurally stable, even though the fixed point is dynamically unstable.
We can conclude that weak dynamical stability or instability implies low structural robustness,
since the dynamics are then so close to a structurally unstable configuration that small structural
perturbations of the model can qualitatively alter the dynamical outcomes.

As det(a) = 0 holds for ecologically identical species, these arguments establish that
structural robustness of coexistence is gradually lost when the two species become ecologically
indistinguishable (see Meszéna et al. 2006).

This is demonstrated in Fig. 1 for the simplest possible combination of parameters: r; =
ry=aj; =ax =1 and ajp = a1 = a. A simple calculation shows that the two eigenvalues
of the matrix a are A, = 1 & &, while the determinant is det(a) = 1 — «®> = A, A_. The larger
eigenvalue is always positive. The dynamical-stability condition A,,A_ > 0 thus holds if
and only if ¢ < 1. When dynamical stability holds, structural robustness requires & to be
significantly smaller than 1.

These results have the well-known biological interpretation that interspecific competition
must be (significantly) weaker than intraspecific competition. In turn, this requires (sufficient)
ecological differentiation between the two species. Increasing species similarity invariably leads
to diminished structural robustness and weakened dynamical stability.

The figure also demonstrates the relationship between structural robustness and dynamical
stability. Transition from dynamical stability to dynamical instability along a parameter change
is accompanied by the loss and reappearance of the structural robustness of an all-positive fixed
point. The fixed point is structurally unstable at the bifurcation point separating the dynamically
stable and unstable regime. As explained in Box 1, this structural instability of the fixed point is
nothing else than the above-mentioned structural instability of coexistence of species without niche
segregation. The overall picture emerging from these mathematical considerations coincides with



the expectation by Abrams (1983): structural robustness of coexistence shrinks, and its dynamical
stability weakens, when species become similar. Robustness and stability disappear altogether
when the species become identical. (The shrinking of the coexistence bandwidth with increasing
similarity needs to be monotonic only for sufficiently small niche differences; see Abrams and
Rueffler 2009 for an example where both very small and very large differences lead to shrinking,
with intermediate differences maintaining the largest possible coexistence bandwidth.) Meszéna
et al. (2006) established the behavior of losing robustness with similarity for several species in a
model-independent way, beyond the Lotka—Volterra model.

In the rest of the paper we concentrate on extending this understanding on the coexistence of
several but finitely many species to the problem of continuous coexistence.

2.2 Lotka—Volterra models and the real world

Lotka—Volterra models were the original framework for examining ecological coexistence (con-
tinuous coexistence in particular), and shaped the way ecologists think about species competition.
This role had arisen from an appealing combination of simplicity and versatility offered by these
models. More recently, however, both the relevance of Lotka—Volterra models and the validity of
the biological picture was questioned in light of more mechanistic models. Here we argue that
Lotka—Volterra models, when considered with proper care, may be used to glean out biological
conclusions that are far more general than the specific models would suggest. Also, we warn about
the possible over-interpretation of the Lotka—Volterra results.

Lotka—Volterra models were introduced by linearizing the per capita growth rates of an arbitrary
population dynamics near a fixed point (Lotka 1932); see, e.g., Barabas et al. (2013) for technical
details. Therefore, one can expect it to be realistic near any such population equilibrium (MacArthur
1970): while per capita growth rates may depend on population densities in nonlinear and intricate
ways, this dependence reduces to a simple linear relationship near any fixed point (see also Durinx
et al. 2008 about the special role of Lotka—Volterra models in evolutionary analyses). This lineariza-
tion is the basis for the generality of our conclusions. However, there are a number of subtleties
involved that need to be discussed.

First of all, the traditional way of studying Lotka—Volterra models is to define it with spe-
cific ingredient functions, such as a Gaussian competition kernel. Obviously, the linearization
of mechanistic models will rarely lead to a Gaussian kernel, or any other generic kernel shape.
The linearization argument lends generality only to the general form of the equations, which are
independent of the specific shapes of the ingredient functions.

Second, linearization is of course a locally valid approximation. Results emerging from the
analysis of the Lotka—Volterra model obtained via linearizing some other model can characterize
the original model only in the local sense. Linearization at different points of the dynamical state
space will lead to different Lotka—Volterra models, i.e., the competition coefficients will not be
constant (Abrams 1980a). Moreover, the Lotka—Volterra model obtained from linearization is not
necessarily the same as the intuitive Lotka—Volterra analogue of the underlying mechanistic model.
This can lead to an apparent inconsistency between Lotka—Volterra and consumer-resource models



(e.g., Abrams et al. 2008, Abrams and Rueffler 2009). It is therefore important to consider the actual,
mathematically rigorous linearization of the model.

Fortunately, dynamical and structural stability as defined in the previous section are local
properties, and so local analysis of models is sufficient to establish them. This will lend generality
to our main result that a fixed point containing continuous coexistence is structurally unstable in any
model. Since all such fixed points will prove to be (locally) structurally unstable, the system will
have to converge to a fixed point which does not contain such a continuum.

The same does not hold for structural robustness, i.e., structural robustness is not strictly a
local property. The structural robustness of coexistence, in particular, is intimately connected to
the question of an extinction threshold — but extinction is in general not close to the all-positive
equilibrium point. Despite this fact, local analyses are indicative of global robustness as well: if
for a given parameter combination the linear analysis finds a lack of robustness in all points of the
state space, then one can expect loss of robustness globally as well (see Meszéna et al. 2006 for the
detailed analysis).

Third, the more detailed ecological models usually have more dynamical variables than just
the total densities of the focal populations. For example, explicit representation of the dynamics of
resources, consumers, and population structure all lead to additional dynamical variables. Averaging
over temporal fluctuations may also introduce such additional dynamical variables (Levins 1979,
Kisdi and Meszéna 1993, Chesson 1994, 2009, Szildgyi and Meszéna 2010). Fortunately, if
one is interested only in the existence, position, and structural robustness of fixed points, any
unwanted variables can be eliminated from a dynamical model by setting their rates to zero in the
corresponding differential equations and by using the resultant algebraic equations to eliminate the
unwanted variables from the remaining differential equations, which may thus be expressed among
total population densities alone (Abrams 2009, Sziladgyi and Meszéna 2009). The resulting model
can then be linearized into Lotka—Volterra form around a fixed point. If the original model has a
fixed point, the corresponding reduced model will have a corresponding fixed point. Therefore,
the existence and structural robustness of such a fixed point will in general be unaffected by the
elimination of additional variables.

Unfortunately, the same equivalence applies to the dynamical stability of the fixed point only
when 1) the dynamics of the population densities are slow relative to that of other variables (such as
resources) which we want to eliminate, and 2) the fast dynamics converge to a stable fixed point. In
this case one can study the slow dynamics separately with the assumption that the equilibrated fast
variables remains in their slowly changing fixed point. Therefore, Lotka—Volterra models are more
indicative of the existence and structural robustness of fixed points of approximated community
dynamics than of their dynamical stability.

Fourth, linearization around a fixed point assumes that the dynamics converges to a fixed point,
instead of exhibiting cycles, chaos, or other complex behavior. Indeed, experience shows that models
of competition along single niche axes often converge to fixed points and do not exhibit complex
dynamics. For Lotka—Volterra models with symmetric interactions among species, this has been
proven by MacArthur (1970). Beyond this, different models of competition—colonization tradeoffs
(Adler and Mosquera 2000, Kinzig et al. 1999, Parvinen and Meszéna 2009), tolerance—fecundity



tradeoffs (Muller-Landau 2010, D’ Andrea et al. 2013), seed-size evolution (Geritz et al. 1999),
and superinfection (Levin and Pimentel 1981) are all based on single niche axes, and all of these
models converge to fixed points, at least for the parameter combinations that were explored in the
aforementioned studies.

However, we do not expect completely different behavior with respect to our interest even
for models with cyclic, chaotic, or stochastically fluctuating population dynamics. No matter
how complicated these dynamics, we can usually find a longer timescale on which the suitably
time-averaged dynamics is stationary. On that timescale, the average per-capita growth rates are
therefore zero (Turelli 1978, Chesson 1994, Szilagyi and Meszéna 2010, Hofbauer and Schreiber
2010, Schreiber et al. 2011). This will come to replace the original equilibrium conditions, to which
the arguments above apply. The resultant conclusions can then be carried over to the original model
with non-equilibrium behavior, since on the longer timescale the time-averaged model is an accurate
representation of the original one; see Barabas et al. (2012) for the case of cyclic oscillations and
Szildgyi and Meszéna (2010) for random-noise fluctuations. Note, however, that we do not claim
that the effect of fluctuation are irrelevant, or small. The long-timescale, averaged-out model can
be completely different from the original one. In particular, the effect of fluctuations can be the
introduction of whole new niche axes (Barabds et al. 2012), leading out of our assumption of a
single regulating continuum. We will therefore not consider models exhibiting complex dynamics in
this article.

The present review attempts to connect the results from specific studies with an emerging general
picture. Naturally, our specific examples will assume specific forms of the ingredient functions.
Most of our discussion will be based on the general Lotka—Volterra model (see below). Results that
go beyond linearization around an equilibrium are mentioned only briefly in the main text. The new
theorem in the Appendix on the other hand is a more general result pertaining to structural stability,
and it does not rely on Lotka—Volterra approximations at all.

2.3 Lotka-Volterra models along a niche axis

In this review we mostly focus on Lotka—Voltera models along a niche axis described by the
following equations:

XB
) o) (1)~ [ atentniay ). )
t Jxa
for all xo <x < xp. Here x varies along the niche axis and measures a quantitative trait influencing
competition between different types, xo and xp are the minimum and maximum values x can take,
n(x,t) is the density of individuals with trait value x while n(x,7) dx is the infinitesimal number of
individuals with trait values between x and x + dx, r(x) is the intrinsic growth rate of individuals
with trait x, and a is the competition kernel, with a(x,y) measuring the interaction strength between
individuals with trait y on those with trait x. As we are mostly interested in competitive interactions,
in our particular examples we will usually assume a to be nonnegative, i.e., a(x,y) > 0 for all x
and y. However, this assumption is a purely didactic one, and the general conclusions concerning
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the dynamical stability and structural robustness of coexistence are insensitive to whether a de-
scribes purely competitive interactions. Note that the standard textbook form of these equations is
obtained by setting K(x) = r(x)/a(x,x) and a(x,y) = a(x,y)/a(x,x). For brevity, we will refer to
the collection of individuals with trait x as “species x”.

The mathematical analyses considered below are often simpler for the homogeneous case
a(x,y) = a(x—y), i.e., when the strength of competition between individuals depends only on the
difference between their traits, so we largely restrict our treatment to this situation (again, this
assumption will not be essential for our main conclusions later). At a fixed point of the dynamics
above, dn(x,t)/dt = 0 for all x. Since the population densities then become time-independent, we
omit ¢ from the argument of n(x, ), writing n(x) when referring to such a steady state.

All coexisting species x have positive population density, n(x) > 0, which leads to the equilibrium
condition

X
r(x) = / ’ a(x,y)n(y)dy for all x with n(x) > 0. ()
XA

It is worthwhile to stress the mathematical nontriviality of this seemingly simple condition.
While it states that the growth rate of each coexisting species must be zero, the condition need not
hold for species that went extinct and thus have zero density: this is because in Eq. (1) the left-hand
side will be zero for a given x either if Eq. (2) holds for x or if n(x) = 0. If we assume that all
possible species are present with positive population density, then condition (2) yields an equation
for each possible x. The solution to the resultant set of equations is called the “natural solution by
Hernandez-Garcia et al. (2009). However, after finding a solution to Eq. (2) by assuming n(x) > 0
for all possible x, one must not forget to check whether n(x) > 0 indeed holds for all x. If so, a
fixed point of the dynamics has been found that corresponds to a community in which all possible
species coexist. If not, i.e., if n(x) < 0 for some x in the natural solution, then the initial assumption
of n(x) > 0 for all possible x is not feasible, and thus wrong. In the latter case, one must then not
just remove the species with negative population densities and retain the positive part of the natural
solution as a solution to the coexistence problem. Instead, the natural solution must be discarded
altogether, as it was derived from a wrong assumption.

Therefore, analyzing the coexistence problem is difficult. One first has to guess at a set of
coexisting species, solve the equilibrium conditions for them, and then check whether the resultant
solution is indeed all-positive. If not, then that specific set of species cannot coexist. Adding to
this complexity is the fact that even if an all-positive solution has been found for a particular set
of species, removing some of those species and keeping the rest may still lead to an all-positive
solution. This means that it can be very difficult to ensure that the set of species underlying a
successfully identified all-positive solution is maximally large. No simple analytical mathematical
procedure is known to bypass this trial-and-error search for all-positive and maximal all-positive
solutions.

The simplest model for continuous coexistence is that of Roughgarden (1979). In this model,
the niche axis encompasses the whole real line, i.e., xo = —o and xg = c. The competition kernel
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is chosen to be homogeneous, symmetric, and Gaussian, with variance o2,

a(x,y) = exp <—(x_y)2> : (3a)

2072

and the intrinsic growth rates are chosen also to vary across traits x according to a Gaussian function

with variance ®2,
52
r(x) = exp <—2(02> . (3b)

For @ > o, the equilibrium density distribution satisfying Eq. (2) is

/o x?
n(x) = \/Wexp <—2(w2_62)) . (3c)

This continuous-coexistence solution exists only when the distribution of intrinsic growth rates is
wider than the competition kernel. For @ < o, no continuous coexistence is possible.

Observe that in the analysis above continuous coexistence seems to appear quite naturally: we
find it in the simplest type of competition (described by Lotka—Volterra models) with the most
convenient choice of ingredient functions (given by Gaussians). It is also extremely easy to construct
infinitely many further mathematical examples of continuous coexistence: choose a(x,y) and n(x)
arbitrarily and then calculate the appropriate intrinsic rates r(x) from Eq. (2). Importantly, however,
nature works the other way around: r(x) and a(x,y) are determined by the considered ecological
circumstances and then one can ask whether a natural solution for n(x) exists and whether it is
dynamically stable.

3 Dynamical stability

In this section, we discuss the conditions under which a continuous-coexistence solution is dynami-
cally stable. This means that here we treat the model structure and all model parameters as being
fixed, while only perturbing the population densities. We assume that a natural solution to Eq. (2)
has been found.

3.1 Positive-definite kernels

Hernandez-Garcia et al. (2009) proved that positive definiteness of the competition kernel is sufficient
for the local dynamical stability of the natural solution. Positive definiteness of a means that the
double integral [[ f(x)a(x,y)f(y)dxdy is positive for any function f. When a is symmetric, i.e.,
a(x,y) = a(y,x) for all x and y, its positive definiteness even implies the natural solution’s global
dynamical stability (Hernandez-Garcia et al. 2009). Although the latter result does not extend to
asymmetric competition, a general nonlinear model of community dynamics is approximated well
by a Lotka—Volterra model only near a fixed point anyway, so results for local dynamical stability
are the best we can use in most situations to begin with.
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3.2 Fourier analysis

The intuitive interpretation of the aforementioned result is easier to explain for homogeneous kernels
and unlimited trait axes, because it turns out that in this case the requirement of positive definiteness
is mathematically equivalent to the competition kernel possessing a Fourier transform whose real
part is positive everywhere (Sasaki 1997, Pigolotti et al. 2007, Leimar et al. 2008, Hernandez-Garcia
et al. 2009). In general, the construction of Fourier transforms relies on the remarkable mathematical
fact that any function (with certain exceptions that are unimportant in applications) can be uniquely
represented as a sum of sine waves of suitable frequency, amplitude, and phase (note that “frequency”
here has nothing to do with temporal change: the frequency of a sine wave is simply the inverse
of its period length, which in the models we consider here has the dimension, not of time, but of
trait difference). The Fourier transform f of a function f is given by f(z) = [~ f(x)e 2"*?dx,
where i = v/—1 is the imaginary unit. This formula indeed decomposes the original function into a
sum of simple sine waves, as ™ = cos(x) -+ isin(x) by Euler’s formula. Reflected by the fact that i
appears in the Fourier transform, the resulting function is usually complex — but it turns out that
symmetric kernels always have real Fourier transforms, so in our examples we stick to such kernels
for simplicity’s sake.

Fig. 2 presents the Fourier transforms of four competition kernels. To understand what these
figures mean biologically, we consider some arbitrary perturbation of the population densities 7n(x)
across all traits x and apply the idea that whatever the shape of this perturbation, it can be uniquely
decomposed into a sum of simple sine waves. Then, the Fourier transform a of the kernel a at
frequency z gives the factor by which the corresponding Fourier component of the perturbation
is amplified over time. Some care is needed in interpreting this factor: in Eq. (1) the sign of the
interaction term is negative, so a positive Fourier amplitude of the kernel results in the damping out,
or negative growth, of the given perturbation component. From this it is evident that if the Fourier
transform of the kernel is positive for all possible frequencies, then no matter how we combine those
frequencies into a perturbing function, they will all be damped out and so the system will return to
its original fixed point: the natural solution is dynamically stable.

Fig. 3 illustrates the effects of adding a low-frequency versus a high-frequency perturbation to
the kernel. In the Fourier transform, such an addition is extremely simple: the transformed function
simply acquires a sharp peak at the frequency we perturb. In the kernel itself, such a perturbation
appears as an extra oscillation added to the original function. Notice how the frequency of the
induced oscillation corresponds to the frequency with which we perturbed the Fourier transform.

It is worth mentioning at this point that the method of decomposing a perturbation’s dynamics
into sine waves is nothing but the generalization of the ideas of linear stability analysis (Box 1) to the
case of infinitely many coexisting species. The analogue of the matrix a in Box 1 is the competition
kernel itself, the eigenvectors in Box 1 correspond to sine waves of varying frequencies, and the
eigenvalues in Box 1 are analogous to the amplitudes and phases associated with those frequencies
in the Fourier transform of the kernel. Therefore, although the discussion of the dynamical stability
of continuous-coexistence solutions requires some new language and a few mathematical tricks, it
does not require any new ideas.
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Figure 2: Examples of different homogeneous competition kernels a (left column) and their Fourier transforms
a (right column). The shown examples are focusing on symmetric kernels, whose Fourier transforms are
real-valued symmetric functions. Interpretation of the values d(z) for continuous z is analogous to that of
the eigenvalues of the Jacobian matrix A for a discrete set of species (Box 1): the continuous-coexistence
solution under a competition kernel a is dynamically stable against a small perturbation of frequency z if and
only if d(z) > 0, so it is dynamically stable against all small perturbations if and only if @(z) > 0 holds for
all z. (a) The Fourier transform of a Gaussian kernel is a Gaussian function with inverse width: as d(z) > 0
holds for all z, all such kernels are positive-definite. (b) The Fourier transform of a very narrow Gaussian
kernel is a very wide Gaussian function. In the biologically unrealistic limit of an infinitely narrow Gaussian
kernel (known as a Dirac delta function), the Fourier transform is therefore flat. (¢) The Fourier transform
of a kinked kernel also goes to zero for large z, but does so more slowly than for a Gaussian kernel with
equal standard deviation. (d) The Fourier transform of a platykurtic kernel, which is more “box-like” than
a Gaussian kernel, also goes to zero for large z, but is negative for a range of intermediate frequencies z,
implying dynamical instability against small perturbations of those frequencies.
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Figure 3: The effects of small- versus high-frequency perturbations in the Fourier transform on the original
function. The first column contains the Fourier transforms: a Gaussian (whose backtransform is also a
Gaussian; see Fig. 2) and an extra, very narrow Gaussian added on top of it. Due to the narrowness of the
perturbation, this corresponds roughly to amplifying a single, well-defined frequency in the Fourier transform.
(a) When this frequency is relatively low, the kernel will attain some slow oscillatory behavior on top of the
original Gaussian shape. (b) When the perturbing frequency is larger, the kernel exhibits much more rapid
oscillations.

3.3 Marginal stability

All Fourier transforms in Fig. 2 approach zero for |z| — co. This is true for the Fourier transform
of any function that has no singularities (Riemann-Lebesgue lemma; see, e.g., Bochner and Chan-
drasekharan 1949). This means that the large-frequency components (if any) of a perturbation will be
damped out only very slowly. Therefore, dynamical stability becomes weaker and weaker for larger
frequencies z. In the limit of infinitely high frequencies, there is no true dynamical stabilization
anymore, as a zero value of the Fourier-transformed kernel means that perturbations are neither
damped nor amplified.

We can consider the Gaussian kernel (3a) of Roughgarden’s model as an example (Fig. 2a).
We know that the corresponding natural solution (3c) exists. The Fourier transform of a Gaussian
kernel with standard deviation ¢ turns out to be another Gaussian with standard deviation 1/c. This
immediately leads to two conclusions. First, as d(z) is positive for all frequencies z, the continuous-
coexistence solution in Roughgarden’s model is dynamically stable. Second, as d(z) becomes very
small for large z, dynamical stability becomes very weak for large z, i.e., for perturbations of high
frequency. In the limit of z — oo, @(z) approaches zero, implying so-called “marginal” stability.

Marginal stability is not just a mathematical curiosity: it is closely related to the discreteness of
species along the niche axis. As explained above, dynamical stabilization is effective only against
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low-frequency perturbations, but not against high-frequency ones. Here, the terms “high” and “low”
are considered relative to the inverse niche width 1/0o: the population densities of different species
are strongly self-regulated, each almost only by its own population density, and thus almost entirely
separately, when their niche differences are much larger than the niche width, i.e., when competition
between them is weak. In contrast, their population densities are weakly regulated when their niche
positions differ by less than the niche width: in that case, competition between them is strong, and it
is only their joint population density that is strongly regulated.

A competition kernel with narrower niche width has a wider Fourier transform (Fig. 2b). With
this in mind, it is instructive to consider the hypothetical extreme case of zero niche width. Then the
competition kernel is described by a so-called Dirac delta function, which can be understood as a
Gaussian function whose standard deviation approaches zero. Accordingly, its Fourier transform is
an infinitely wide Gaussian function — that is, a constant function. As the Dirac delta function is
singular at x = 0, the Riemann-Lebesgue lemma no longer applies. For such perfectly local competi-
tion, dynamical stability would remain strong for perturbations with arbitrarily high frequencies, as
the strength of competition would remain zero even between two arbitrarily similar species. Accord-
ingly, there would be no need for species to remain discrete. Obviously however, zero niche width is
impossible in the real world: realistic competition kernels are always nonsingular (Geritz et al. 1999,
Adler and Mosquera 2000, Rueffler et al. 2007, Barabas et al. 2013; see the section “Kinked kernels”
below, arguing that any nonsmooth competition kernel is in fact biologically unrealistic). Therefore,
dynamical stability is marginal at best for any realistic example of continuous coexistence.

3.4 Nondifferentiable positive-definite kernels

To move beyond the realm of Gaussian functions, the following property of Fourier transforms is
helpful. As mentioned before, all nonsingular functions have Fourier transforms that eventually
approach zero for large frequencies. However, not all of them approach zero at the same rate.
More specifically, a function that is differentiable k times has a Fourier transform that for large z
approaches zero as fast as z7¥~2 (Brychkov and Shirokov 1970). Therefore, the more differentiable
a function is, the faster its Fourier transform approaches zero and, accordingly, the less stable
continuous coexistence will be for competition described by such kernels. One example is provided
by Gaussian functions, which are differentiable infinitely many times and whose Fourier transforms
therefore approach zero faster than any power function. Other types of competition kernels are not
differentiable so many times. For instance, Pigolotti et al. (2010) and Barabas et al. (2013) analyzed
kernels that are nondifferentiable at x = 0, i.e., at the point of self-competition: these have been
dubbed “kinked” kernels. See Fig. 2¢ for an example. By comparing Fig. 2c with Fig. 2a, it is
evident that the Fourier transform of such kinked kernels approach zero much more slowly than
that of Gaussian kernels of similar width. This means that the continuous-coexistence solution has
nonmarginal stability for a much wider range of frequencies, and therefore for a much wider class
of perturbations.
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3.5 Opverlap kernels

So far we have examined only positive-definite competition kernels, as the continuous-coexistence
solution is dynamically unstable for other kernels. It is thus important to understand how positive-
definite and non-positive-definite kernels might arise in nature (Fig. 2d). One simple result is that
if the competition kernel is exactly determined by the overlap between the resource-utilization
functions of the two competing species (as, €.g., in MacArthur and Levins 1967), then it will always
be positive-definite (Roughgarden 1979, p. 520, Hernandez-Garcia et al. 2009, Pigolotti et al. 2010).
However, as pointed out in the last two references and by Meszéna et al. (2006), analyzing such
overlaps between resource-utilization functions is but one special, if particularly popular, approach
to the formation of competition kernels. Non-positive-definite kernels arise just as naturally from
other approaches.

3.6 Platykurtic kernels

One feature many non-positive-definite kernels have in common is that they are more platykurtic,
or “box-like”, than positive-definite ones, as a quick visual comparison of Fig. 2d with the other
three examples in the same figure immediately reveals. This makes intuitive sense given the
link between continuous coexistence and positive definiteness: a more box-like competition kernel
means that similar species compete more strongly, making their coexistence more difficult to achieve.
Conversely, kinked kernels reduce competition even between very similar species to tolerable levels,
making their coexistence easier.

3.7 Summary

The dynamical stability of the natural solution, and thus of continuous coexistence, hinges on the
positive definiteness of the competition kernel, i.e., the double integral [[ f(x)a(x,y)f(y)dxdy has
to be positive for any function f. For homogeneous kernels, where a(x,y) = a(x —y), positive
definiteness is equivalent to the positivity of the competition kernel’s Fourier transform. In the
homogeneous case even when this requirement is met, dynamical stability is always only marginal
for perturbations involving frequencies approaching infinity.

4 Structural robustness

After having studied the dynamical stability of the natural solution, in this section we now turn our
attention to the structural robustness of the all-positive fixed point describing continuous coexistence.
4.1 Two aspects of structural robustness

The Lotka—Volterra models in Eq. (1) have two ingredient functions: the competition kernel a and
the distribution r of intrinsic growth rates. Structural stability and robustness therefore needs to be
analyzed with respect to perturbations of each of these ingredients.
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Robustness with respect to perturbations of the competition kernel is easier to understand than
robustness with respect to perturbations of the distribution of intrinsic growth rates. As we have
seen in the previous section, positive definiteness of the kernel is required for dynamically stable
continuous coexistence. For homogeneous kernels, this translates to the Fourier transform having to
be positive. In this case, we have also seen that the transformed kernel always approaches zero for
large frequencies. Therefore, if we perturb the competition kernel by a sinusoidal function of high
enough frequency, its Fourier transform will turn negative at some points regardless of how small
the strength of this perturbation is. Therefore, there always exists a perturbation of arbitrarily small
strength that turns a dynamically stable fixed point (corresponding to dynamically stable continuous
coexistence) into a dynamically unstable one (corresponding to the loss of continuous coexistence).
The conclusion for homogeneous and positive-definite competition kernels is that the fixed point of
continuous coexistence is always structurally unstable with respect to perturbations of such kernels.

Below, we therefore focus on the much more important aspect of robustness against perturbations
of the intrinsic rates r. There are two reasons why this is more important. First, it is easier to
provide general results for structural robustness rather than dynamical stability, as there are powerful
model-independent theorems that can inform us about structural robustness. Second, as we shall
see, continuous coexistence will prove to be unrobust to perturbations of the intrinsic rates r in any
realistic model, irrespective of the properties of the competition kernel.

The topic was initiated by the landmark paper of Sasaki and Ellner (1995): while these authors
investigated mixed evolutionarily stable strategies (ESS, Maynard Smith and Price 1973) in fluc-
tuating environments, the mathematical structure of their problem was similar to the problem of
coexistence in Lotka—Volterra models (see Eq. E4 of Sasaki and Ellner 1995). They concluded that
a mixed ESS with a continuous distribution was exceptional, i.e., structurally unstable. Haccou and
Iwasa (1998) studied the transition between the continuous and the discrete solutions. The issue of
generic discreteness was further established by Sasaki (1997) (in the formally analogous context of
spatial rather than phenotypic distributions of individuals), who explicitly demonstrated the lack of
structural robustness of Lotka—Volterra models to small random-noise perturbations of the intrinsic
rates 7.

Based on these earlier findings, Gyllenberg and Meszéna (2005) have proven a result that is
independent of Lotka—Volterra models: continuous coexistence is inevitably structurally unstable. It
is beyond the scope of the current article to specify the precise mathematical assumptions underlying
this result. In essence, the theorem is based on two biologically natural assumptions: a finite niche
volume (for instance, a finite interval [xa,xg] along a niche axis describing variation in a quantitative
trait x) and continuous ingredient functions (therefore, the theorem does not exclude the possibility
of structurally robust continuous coexistence for an infinitely narrow competition kernel, as such a
kernel is not continuous). However, there is one limitation in the way the theorem treats coexistence,
as it focuses on the structurally robust coexistence of a predefined set of strategies: while the theorem
shows that there always exists an arbitrarily small perturbation that destroys coexistence of any
specific infinite set of species, it leaves open the possibility that another infinite set of species can
coexist after the perturbation.
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These considerations assumed that the functions a and r can be perturbed independently of
one another. This will not be necessarily so when the Lotka—Volterra approximation is derived
as the linearization to an underlying model: a perturbation of the original model will in general
modify both the kernel a and the intrinsic rates » (Ackermann and Doebeli 2004, Rueffler et al.
2006). However, it is always possible to modify the intrinsic rates r independently in any underlying
model, as this would simply correspond to species-specific increased mortality rates, possibly due to
chronic predation or any other ecological mechanism. Adding such extra mortalities modify the
intrinsic rates r but not the kernel a. This extra freedom can also be used to keep r constant when a
is perturbed. Putting it differently, if the underlying model builds a fine-tuned connection between r
and a such that the arguments above lose validity, then that fine-tuning is structurally unstable.

4.2 Analytic kernels

A stronger statement can be derived if we assume analytic ingredient functions. A function
is called analytic if it can be substituted by its Taylor series around any value of its argument.
Consequently, such functions are differentiable infinitely many times, so that analyticity can be seen
as an especially high degree of “smoothness”. The use of analyticity arguments in the context of
continuous coexistence was initiated by Sasaki and Ellner (1995).

With the assumption of analyticity, any model that allows an infinite set of species to coexist on
a finite interval along a single niche axis can be perturbed by an arbitrarily small perturbation in
such way that the perturbed model no longer allows for the coexistence of any infinite set of species.
This theorem was proved by Gyllenberg and Meszéna (2005) for the special case of Lotka—Volterra
models with homogeneous competition kernels (with key elements of the mathematical argument
closely corresponding to those underlying Proposition 2 of Appendix E in Sasaki and Ellner 1995).
With the proof being presented in the Appendix, here we provide a model-independent generalization
of this theorem.

Fig. 4 provides an example. The kernel is homogeneous, but that is just for the sake of easier
presentation: nonhomogeneous kernels are more difficult to plot and to interpret. The kernel used in
this example does not peak at zero niche difference (competition does not increase monotonically
with increasing species similarity), and the interactions described by this kernel are not purely
competitive. Maximal competition at zero niche difference and purely competitive kernels are
popular assumptions, but are not necessarily biologically realistic (Ackermann and Doebeli 2004,
Abrams and Rueffler 2009). In our example, the original continuous coexistence pattern collapses
into the coexistence of ten distinct species after perturbing the intrinsic rates r — just as the theory
predicts.

Reinterpreting the classical results on species coexistence and similarity in light of the theorem
in the Appendix reinforces some of the original conclusions, while overcoming the mathematical
limitations of the original analyses. For example, Szabé and Meszéna (2006) considered the
continuous-coexistence solution of Roughgarden and tried to break it by changing the distribution
of intrinsic growth rates in a variety of ways. They found that the original “2c-rule” of MacArthur
and Levins (1967) for the minimum distance between coexisting species can be retained as a rule
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Figure 4: Coexistence under an analytic competition kernel. (a) The competition kernel a is obtained as
alx—y) = o256y (1 —30(x —y))/v/2. One can show that this kernel is positive definite. Note that the
kernel does not attain its maximum at zero niche difference, and that the species interactions described by this
kernel are not purely competitive. (b) The distribution r of intrinsic growth rates (dashed curve) is constructed
s0 as to yield the continuous-coexistence solution n(x) = exp(—(x —0.5)?/0.02) (gray curve and area) in
conjunction with this particular competition kernel. This is achieved by inserting the kernel and the desired
continuous-coexistence solution into Eq. (2). We perturb this distribution r with a small and very narrow
perturbation at x = 0.5. The outcome is obtained by following the dynamics of Eq. (1), approximated by
400 equidistant species, until equilibrium is reached, from a uniform initial condition. Even though the
perturbation is small, it completely collapses continuous coexistence, leaving only ten discrete, more-or-less
evenly spaced surviving species (vertical lines).

of thumb, i.e., the coexistence of species at a niche distance that is smaller than twice their niche
width has sufficiently low structural robustness to be unlikely to be observed. On this basis, Barabas
and Meszéna (2009) investigated whether and how continuous-coexistence solutions are recovered
in the limit of infinitely small perturbations to the distribution of intrinsic growth rates. The main
results can be summarized as follows. First, the shape of the perturbing function is largely irrelevant;
it is only its amplitude that matters. Second, the average niche distance between nearest neighbors
is proportional to ((26)~! — BIng)~!, where o is the standard deviation of the competition kernel,
B varies with the shape of the perturbing function, but can be approximated by 1 without incurring
a large error, and € is the perturbation’s amplitude. Here, € is measured relative to the maximum
of the unperturbed intrinsic rates r and ¢ is measured relative to the width of the unperturbed r (@
in Eq. (3b)). This expression predicts that for small o the average nearest-neighbor niche distance
rises very steeply with &, towards an intermediate plateau at 26 (the spacing exactly equals 20 for
€ = 1). For example, for 0 = 0.01, a spacing of 90% of 20 is reached already for perturbation
amplitudes as small as € ~ 0.4%. For very small values of €, species packing can be very tight.
As € — 0, continuous coexistence is recovered, as mathematically required. But since such very
tight packing can be achieved only when perturbations remain exceedingly small, in reality we are
approximately observing the classical 2c-rule.
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These results are in line with the aforementioned theorem by Gyllenberg and Meszéna (2005),
which establishes that analytic competition kernels preclude any structurally robust continuous
coexistence, so that the emergence of finitely many, discrete species is the expected equilibrium
community pattern. A remaining question is what happens when the intrinsic rates r(x) are perturbed
and the competition kernel is not analytic.

4.3 Smooth nonanalytic kernels

Since assuming analyticity requires a degree of “smoothness” that is biologically unrealistic, we now
turn to competition kernels that are not analytic, but just differentiable at least once. In mathematics,
such functions are called “smooth”!. While there are no such powerful theorems as in the case of
analytic kernels to rule out structurally robust continuous coexistence, smooth nonanalytic kernels
are visually similar to analytic ones and there is no obvious argument to discard them a priori as
being biologically unrealistic.
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Figure 5: Coexistence under a smooth nonanalytic competition kernel. (a) The competition kernel a is
obtained as a(x —y) = [u(x —z)u(y — z) dz with a resource-utilization function u that equals u(x) = 1 — |10x]
for x < 1/10 and zero otherwise. The construction of this kernel as an overlap kernel guarantees its positive
definiteness. It is smooth enough to be twice differentiable, but not smooth enough to be analytic, as its
third derivative is already discontinuous. (b) The distribution r of intrinsic growth rates (dashed curve) is
constructed so as to yield the continuous-coexistence solution 7(x) = exp(—(x —0.5)?/0.02) (gray curve and
area) in conjunction with this particular competition kernel, just as in Fig. 4. We perturb this distribution r
with a small and very narrow perturbation at x = 0.5 (tiny peak at the top of the dashed curve). The outcome
is obtained by following the dynamics of Eq. (1), approximated by 400 equidistant species, until equilibrium
is reached, from a uniform initial condition. Even though the perturbation is small, it completely collapses
continuous coexistence, leaving only five discrete, more-or-less evenly spaced surviving species (vertical
lines). Observe that the distance between neighboring surviving species roughly equals twice the standard
deviation of the competition kernel.

!In the mathematics literature, “smooth” is often synonymous with “differentiable infinitely many times”. We deviate
from this convention by calling those functions “smooth” that are differentiable at least once.
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Barabds et al. (2013) have performed extensive numerical analyses to clarify what kinds of
coexistence patterns are to be expected under such conditions: they chose smooth nonanalytic
kernels a and intrinsic rate distributions r(x) that produced continuous-coexistence solutions, and
then numerically solved Eq. (1) for small localized perturbations of r(x) and initial conditions
n(x,0) = ng(x) = const. In all studied cases, continuous coexistence proved to be structurally
unstable, which means that the model behaved in every way as if the competition kernel were
analytic (Fig. 5; see also Fig. 2 in Barabas et al. 2013).

Based on these results, we tentatively accept the conclusion that smooth nonanalytic kernels
also do not allow for structurally robust continuous coexistence: for all practical purposes, they
behave as if they were analytic.

4.4 Kinked kernels

As stated before, we refer to a competition kernel as being “kinked” if it is nondifferentiable at the
point of self-competition (kernels possessing nondifferentiabilities at other points are not called
“kinked” according to this convention). The competition dynamics resulting from kinked kernels
turns out to be vastly different from what we have discussed above. Barabds et al. (2013) numerically
analyzed many instances of Lotka—Volterra models with kinked kernels, the result invariably being
that continuous coexistence turned out to be structurally robust (Fig. 6; see also Fig. 3 in Barabés
et al. 2013). Certain species might go extinct, but the pattern of infinitely closely packed species
remains intact.

An intuition of why this happens can be gained by examining the coexistence of just two species.
For two species with similar niche positions competing according to a smooth competition kernel,
the strength of interspecific competition will almost equal that of intraspecific competition. More
precisely, the ratio between both types of competition is exactly 1 to a first-order approximation
for small niche distances. The reason is that, since the two species are so close together, the
competition kernel needs to be considered only for very small niche differences, i.e., very near its
peak — where, to first-order approximation, a smooth function does not change. Since dynamically
stable coexistence requires that intraspecific competition be greater than interspecific competition,
coexistence at very small niche distance will then not be structurally stable, i.e., it can occur only
for very particular parameter choices. To coexist structurally robustly, the two species will thus have
to differ somewhat more in their niche traits, such that the quadratic term of the Taylor expansion of
the competition kernel plays a nonnegligible role in reducing interspecific competition. In contrast,
if the kernel is kinked, then no matter how similar the two species are, competition between them is
reduced linearly with their niche distance, rendering their coexistence structurally robust. The fact
that a kinked kernel decays linearly with the distance from its maximum — as opposed to a smooth
kernel which decays only quadratically — is the key to the capacity of kinked kernels to generate
structurally robust coexistence among arbitrarily similar species. Therefore, not only are there good
intuitive reasons to expect structurally robust continuous coexistence under kinked competition
kernels, but every numerical example we have considered so far confirms this expectation.
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Figure 6: Coexistence under a kinked competition kernel. (a) The competition kernel a is given by a(x —
y) = exp(—|x —y|/0.04). This kernel is kinked (not differentiable) at x = 0. (b) The distribution r of
intrinsic growth rates (dashed curve) is constructed so as to yield the continuous-coexistence solution
n(x) = 10(0.25 — (x — 0.5)?) for 0 < x < 1 and n(x) = 0 otherwise in conjunction with this particular
competition kernel. We perturb this distribution r with a small and very narrow perturbation at x = 0.5
(tiny peak at the top of the dashed curve). The outcome is obtained by following the dynamics of Eq. (1),
approximated by 400 equidistant species, until equilibrium is reached, from a uniform initial condition. Under
this perturbation, the original community is almost perfectly retained, except for a narrow range of species
that go extinct near the central species at x = 0.5, which the perturbation furnishes with a relative advantage.
Therefore, although the community as a whole is not structurally stable with respect to the perturbation of r
— since some extinctions did happen, as is guaranteed by the theorem by Gyllenberg and Meszéna (2005) —
the general pattern of continuous coexistence turns out to be structurally robust. This structural robustness
of continuous coexistence, however, is an artifact of the competition kernel being kinked: as explained in
the text, such kernels are not biologically realistic, so the coexistence patterns they generate are of no real
significance.

However, it has been argued (Barabds et al. 2013) that kinked kernels provide an unrealistic
representation of trait-dependent competition, arising from overly idealized ecological assumptions.
In particular, it has been shown that intraspecific variation in traits (any intraspecific variation
at all, not just continuous or smooth ones), as well as environmental variability, will smooth out
any nondifferentiabilities in the competition kernel. Therefore, the structurally robust continuous-
coexistence patterns produced by kinked kernels turn out to be mere model artifacts. This has
important implications for models using such kernels, like the hierarchical competition-colonization
and competition-mortality tradeoff models (Kinzig et al. 1999, Adler and Mosquera 2000; in these
models, competition kernels are discontinuous, making structurally robust continuous coexistence
even easier to achieve than in models in which competition kernels are merely kinked), the tolerance-
fecundity tradeoff model (Muller-Landau 2010), and models of superinfection (Levin and Pimentel
1981). It must therefore be expected that any smoothing out of trait-dependent competition in these
models will lead to qualitative differences in their behavior. For instance, D’ Andrea et al. (2013)
have investigated the tolerance-fecundity and competition-colonization tradeoff models to ascertain
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whether the proposed coexistence mechanisms in these models would still operate after smoothing
the assumed competition kernels, and to examine how other aspects of the model, such as species
richness, would be affected. These analyses showed that the proposed coexistence mechanisms
still work as such, but also that they generate significantly less coexistence than their nonsmooth
counterparts, even if the smoothed kernels were still changing very abruptly (i.e., they had large
negative second derivatives at the point of self-competition; with the corresponding absolute value
being infinitely large for a kinked kernel). Very similar results were obtained by Adler and Mosquera
(2000) for the competition-mortality tradeoff model, and by Geritz et al. (1999) for a model of
seed-size evolution. In particular, continuous coexistence was always ruled out after smoothing the
competition kernels of these models.

Note that the importance of the shape of the competition kernel has already been emphasized by
Abrams (1975); his results are easy to interpret within the context above. He studied the coexistence
bandwidth for two species as a function of niche difference in three different models. The first
model employed the usual smooth overlap kernel. Accordingly, the coexistence bandwidth shrunk
to zero quadratically, which means that beyond a certain level of similarity the bandwidth shrinks
so fast that it becomes essentially zero. In the other two models the strength of competition was
related to the area in common under the two utilization curves, instead of the overlap-integral of the
curves. In can be shown (Barabas et al. 2013) that these kinds of kernels are kinked. Therefore, the
coexistence bandwidth goes to zero only linearly in these cases, meaning that the bandwidth can
still be appreciably large even for very similar species. From this angle, too, the result is that kinked
kernels allow for the coexistence of similar species.

4.5 Kinked non-positive-definite kernels

For the sake of completeness and theoretical interest, we finally consider what happens when a
competition kernel is kinked, but not positive-definite. We know that kinked kernels can produce
structurally robust continuous coexistence, but we also know that non-positive-definite kernels
destabilize continuous coexistence. What happens when these two opposing effects are occurring
together?

Once again, only numerical analyses are available for addressing this question. Such analyses
consistently show a special coexistence pattern in which exclusion zones are interspersed with
trait intervals of continuously coexisting species (Fig. 7). These findings are compatible with
the interpretation that local dynamics along the trait axis are dominated by the kernel’s kink,
whereas the global pattern is determined by the kernel’s non-positive-definiteness. In summary,
continuous coexistence is still observed, although not for all trait values along the niche axis.
With this qualification, kinked non-positive-definite kernels produce structurally robust continuous
coexistence just as kinked positive-definite kernels do.

The relevance of these findings lies not just in future research: kinked non-positive-definite
kernels have already been used in the literature, leading to the patterns described above (Scheffer
and van Nes 2006, Hernandez-Garcia et al. 2009, Vergnon et al. 2012). In the study by Scheffer
and van Nes (2006), the competition kernel was chosen to be Gaussian, for which the arguments
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Figure 7: Coexistence under a kinked non-positive-definite competition kernel. (a) The competition kernel
a is given by a(x —y) = 0.9exp(—(x —y)*/0.15%) +0.1exp(—|x — y|/0.02). This kernel is kinked (not
differentiable) at x = 0, and its Fourier transform is negative for some frequencies. (b) The distribution r of
intrinsic growth rates is given by r(x) = exp(—(x —0.5)%/0.4%) (dashed curve). The outcome is obtained by
following the dynamics of Eq. (1), approximated by 400 equidistant species, until equilibrium is reached,
from a uniform initial condition. This yields a coexistence pattern in which dynamically stable lumps of
continuously coexisting species are alternating with exclusion zones in which no species exist. Interesting
though these patterns are, they are of no real significance, as they critically depend on the biologically
unrealistic assumption of a kinked competition kernel.

presented in the previous sections clearly predict dynamically stable (but structurally unrobust)
continuous coexistence. Pigolotti et al. (2010) elucidated how this discrepancy with the numerical
results actually reported by Scheffer and van Nes (2006) can be ascribed to the implementation
of periodic boundary conditions. When periodic boundary conditions are chosen, distances are
not unambiguously defined, as the niche space is effectively a circle. Denoting the shortest niche
distance between two species by d and the circle’s length by L, the proper implementation of
periodic boundaries requires that all distances (jL+d) or (jL —d) for arbitrary positive integers
J be considered, corresponding to different numbers of winding clockwise or counterclockwise
around the circle. Instead, Scheffer and van Nes (2006) implemented periodic boundaries by simply
picking the shortest of all these distances. Such a simplification amounts to truncating the tails of
the competition kernel at a niche distance of d = L/2. Because of the structural instability of models
with Gaussian kernels discussed above, this truncated kernel has negative Fourier components,
leading to the dynamical instability of continuous coexistence, and thus to the “clumpy” pattern
observed by Scheffer and van Nes (2006): this pattern applies for very long transients, during which
several additional species coexist around each of a few eventual surviving equally spaced species.
As was highlighted already by Scheffer and van Nes (2006), these unusually long transients result
when applying a perfectly uniform function for the intrinsic rates r — Fig. 4 of their study shows
faster convergence to the eventual equilibrium when r is not uniform. Crucially, Pigolotti et al.
(2010) showed how the clumpy pattern disappears when periodic boundaries are implemented in
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the usual way: as the kernel then is not truncated, and hence remains positive-definite, no transient
clumps of species are observed and continuous coexistence is retained.

Scheffer and van Nes (2006) also studied a case in which the same model is complemented by
an enhanced self-interaction term — possibly describing species-specific predators or pathogens. The
resulting effective competition kernel was therefore given by a Dirac delta function being added to
the original Gaussian. The outcome of this setting can be understood as the combined effect of the
negative Fourier components of the truncated Gaussian kernel, leading to the clumpy pattern, and of
the Dirac delta function, which in analogy with the kinked kernels described above has the effect of
stabilizing continuous coexistence within the clumps (Fig. 7). To appreciate the connection, notice
that the Dirac delta function can be defined as the limit of a kinked kernel, namely a symmetric tent
function, in which the two flanks surrounding the kink become infinitely steep. (Earlier in the article
we claimed that a Dirac delta can be thought of as a Gaussian with an infinitely narrow variance.
There is no contradiction: both procedures lead to the same object in the limit of infinite steepness
and infinitely small variance, respectively.)

It has been emphasized (Scheffer and van Nes 2006) that such patterns generated by kinked
but non-positive-definite kernels fall neither into the domain of pure limiting similarity nor into
that of pure continuous coexistence, but constitute an interesting separate case situated in between
those extremes. Contrary to this interpretation, however, we would be cautious about assigning
too great an importance to these mixed coexistence patterns, simply because kinked kernels are
unbiological. Therefore, interesting though the patterns produced by kinked non-positive-definite
kernels are from a purely theoretical perspective, they are practically irrelevant in a world in which
all realistic competition kernels are smooth.

4.6 Summary

Analytic competition kernels never allow for structurally stable continuous coexistence, as is proved
in the Appendix. Smooth nonanalytic kernels seem to behave exactly like their analytic cousins,
though the evidence so far is purely numerical (see, e.g., Fig. 5). While kinked kernels do lead
to the robust possibility of arbitrarily many arbitrarily similar coexisting species, such kernels
are biologically unrealistic, therefore this theoretical possibility cannot be realized in nature. In
reality, competition kernels are always smooth. As long as no counterexamples are found to smooth
kernels behaving just like analytic ones, this will rule out structurally robust continuous coexistence
altogether.

5 Discussion

In this article we have reviewed the community patterns produced by the grandmother of all
competition models, the family of Lotka—Volterra models. We were particularly interested in
conditions for continuous coexistence, i.e., coexistence of arbitrarily many arbitrarily tightly packed
species along a single niche axis. To address the biological relevance of dynamically stable patterns
of continuous coexistence, we have investigated whether such patterns are also structurally stable,
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or robust: do small perturbations of a Lotka—Volterra model’s ingredient functions — the competition
kernel and the distribution of intrinsic growth rates — typically restore the discreteness of coexisting
ecological types? The answer is that patterns of continuous coexistence are invariably structurally
unstable to perturbations of the distribution of intrinsic growth rates if the competition kernel is
analytic; this has been proven as a theorem (see the Appendix). We also find that smooth nonanalytic
competition kernels behave exactly like their analytic counterparts in that any resultant continuous
coexistence is structurally unstable. While there is no analytic proof of this latter finding, extensive
numerical results are all pointing in this direction. Finally, competition kernels that are “kinked”,
i.e., are nondifferentiable at zero niche distance, lead to structurally robust continuous coexistence.
However, such kernels are biologically unrealistic: in reality, we expect all competition kernels to
be smooth. The emerging picture is that coexistence of a number of well-defined, separate species is
expected in all realistic Lotka—Volterra models. Exceptions to this rule require either unrealistic
biological assumptions or fine-tuned parameter values.

Two reasons motivate our focus on Lotka—Volterra models. First, as stated earlier, any model
reduces to a Lotka—Volterra model near a fixed point, and many niche models indeed exhibit fixed-
point equilibria. Therefore, Lotka—Volterra models are much more general than it seems at first
sight: since dynamical and structural stability are local properties of a model, fixed point analysis
suffices to establish them. Second, Lotka—Volterra models also have the advantage of providing
the simplest possible framework for studying competition. Consequently, it is very important to
gain a deep and thorough understanding of all possible dynamic behaviors and resultant community
patterns such models can produce, as this provides a necessary solid starting point for understanding
more complicated models.

The emerging picture is that the mathematical structure of ecological interactions alone is
enough to dictate the discreteness of species. Yes, there exist specific models where a continuum of
ecological types may coexist. Even more is true: continuous coexistence can be achieved in any
model whatsoever by properly fine-tuning parameters. However, such coexistence is necessarily
structurally unstable, and is dynamically marginally stable at best. Both dynamical and structural
stability have a characteristic distance along the niche axis, determined by the asymptotic decay of
the kernel’s Fourier transform. The stabilizing effect of ecological interactions is based on the net
interspecific competition weakening compared with intraspecific competition. Since we assume that
the kernel is smooth, this weakening — an the stabilizing effect (Chesson 2000) that comes with it —
cannot be realized between types that are overly similar. The niche distance over which competition
decreases sufficiently corresponds to the niche width of early competition models.

In general we cannot expect the competition kernel to be Gaussian, or even to decrease mono-
tonically with increasing niche distance. The crucial fact on which the above intuitive picture hinges
is that the strength of competition will significantly decrease for large enough niche differences.
The distance over which this “significant decrease” happens is what we call the niche width. This
definition is decidedly imprecise — but it is still a useful concept, yielding a rule of thumb for the
approximate distance between coexisting species in the absence of fine-tuning (Szab6 and Meszéna
2006, Barabas and Meszéna 2009).
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Naturally, no fixed lower limit to the similarity of coexisting species exists: arbitrarily similars
may coexist by properly adjusting parameters. Without such tinkering however, an effective lower
limit to similarity appears, in line with the picture given by Abrams (1983) and already mentioned
in the Introduction. In this case it is the niche width, defined above, which will determine that lower
limit. In this way, we managed to unite the possibility for continuous coexistence, the intuition
regarding limiting similarity, and the concept of the coexistence bandwidth into a single framework.
This framework is independent of the underlying ecological details.

Our analyses were restricted to models with a single niche axis. Many of our results on the other
hand still apply for multidimensional niche spaces as well. In particular, positive definiteness of
the kernel as a requirement for dynamical stability, and its relation to (multidimensional) Fourier
transforms for homogeneous kernels are retained. The theorem of Gyllenberg and Meszéna (2005)
explicitly assumes a multidimensional niche space. Only the result assuming analyticity (the theorem
of the Appendix) is restricted to a single niche dimension. Whether this theorem can be generalized
to multiple niche axes is an open question. Nevertheless, we do not expect its conclusions to be
violated on these grounds. At least so far, we have not seen any counterexamples to the claim that
continuous coexistence is structurally unstable for multiple niche dimensions.

Needless to say, departures from the results reported here could occur for a number of reasons:
e.g., equilibrium might not be reached, so some species may still be on their way to extinction; the
spatial range to which the model is applied could be chosen too small, so immigration from outside
that range, unaccounted for in the model, might dominate the observed coexistence patterns; or
the salient niche spaces might be multi-dimensional (imagine two independent niche axes; if two
species are segregated with respect to one but not the other axis, and we only look at that second
axis, we will get the impression that the species coexist without niche segregation). But the theory
summarized here still provides clear baseline expectations regarding community patterns, rejection
of which would indicate that one or more of the aforementioned reasons are applicable in a studied
empirical setting. That the theory reviewed in this article establishes the picture of discretely many,
separate species coexisting as a baseline expectation makes it especially useful: where the theory’s
assumptions are met, it provides strong qualitative and quantitative insights and predictions, and
where these predictions are not met, it narrows down the underlying reasons to a handful of testable
hypotheses for further empirical investigations.

A central aspect of the debate concerning limiting similarity was the claim by May (1973) that
limiting similarity is contingent on environmental fluctuations. This idea has been criticized by
Abrams (1976), who showed that only those fluctuations can maintain limiting similarity which
influence the competing species in different ways. Turelli (1978) introduced the method of averaging
to study invasion dynamics, and built the stochastic theory from ground up, using stochastic
differential equations. In light of their results one can say that May’s argument is valid when the
fluctuations are so slow as to make it biologically meaningless to take averages over it. In this
case, species must be able to coexist for all parameter combinations produced by the fluctuating
environment. May’s argument is therefore effectively equivalent to an argument about structural
robustness, leading to limits of similarity when the fluctuating parameters are varying the relative
competitiveness of the competing species.
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Discussions on the adequacy of Lotka—Volterra models are closely connected to broader ques-
tions about the role of theoretical models in ecology. After all, such models always oversimplify
reality, the “validity” of underlying assumptions are difficult to ascertain, and different models may
often lead to wildly different conclusions. The study of limiting similarity is especially sensitive in
this respect: the very same family of Lotka—Volterra models has not only motivated the notion of
limiting similarity, but has also been used for demonstrating the possibility of continuous coexistence.
The history of theoretical ecology has shown that going beyond Lotka—Volterra models also did not
help to clarify this confusingly ambiguous situation, which uncomfortably reminded researchers of
the fact that they did not actually fully understand even the simplest models. In a nutshell, it has
taken theoretical ecologists decades to unravel the subtleties associated with continuous coexistence
in Lotka—Volterra models. Here we have attempted to demonstrate that a sufficiently careful analysis
of Lotka—Volterra models, together with some general considerations, can largely settle the issue
of continuous coexistence versus the discreteness of species — not just for one specific family of
models, but as a broadly relevant biological conclusion.
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Appendix: An extension of the theorem by Gyllenberg and Meszéna
(2005)

In this Appendix we state and prove an extension to Theorems 4 and 8 of Gyllenberg and Meszéna
(2005).

Theorem 4 of that article proves that the coexistence of infinitely many species is structurally
unstable (i.e., can be destroyed by an arbitrarily small modification of the underlying model) when
the (possibly nonlinear) operator describing population interactions is compact in the sense defined
below. This assumption is valid if, e.g., the trait values in niche space are constrained to a finite
volume (like [x4,xp] in the main text) and the model is constructed from continuous ingredient
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functions, as shown by Theorems 1-3 of Gyllenberg and Meszéna (2005). This assumption is
therefore expected to hold for any realistic ecological model, rendering the result stated by the
aforementioned Theorem 4 very general. However, as highlighted in the main text, that theorem
does not exclude the possibility that a different set of infinitely many species can still coexist after
the structural perturbation.

Theorem 8 of Gyllenberg and Meszéna (2005) rectifies this problem, but only for Lotka—Volterra
models with a one-dimensional niche space and a homogeneous and analytic competition kernel.
As now an infinite niche axis is allowed, robust coexistence of infinitely many species is possible.
The theorem states that the set of coexisting species cannot contain a continuum (mathematically
speaking, have a “limit point”) in a structurally robust way. In other words, if a model has a solution
with a limit point, the model has a structurally perturbed version that does not have such a solution.
As shown by Barabds et al. (2013), the assumption of analyticity is an important prerequisite for
this theorem, as kinked kernels (which are nonanalytic) satisfy the conditions of Theorem 4, but not
of Theorem 8.

The first theorem below proves an extension of Theorem 8 beyond the confines of Lotka—Volterra
models, while retaining the assumptions of a one-dimensional niche space and of the analyticity
of the ingredient functions. The second theorem below shows that if the original intrinsic growth
rates r(x) are positive and bounded away from zero, then the perturbed intrinsic growth rates can be
chosen to be positive as well.

As in the main text, r and n are the distributions of intrinsic growth rates r(x) and densities n(x)
of species with trait vales x. The densities » may describe continuous or discrete distributions, with
the latter being composed of Dirac delta functions. Accordingly, n is not a continuous function, but
a more abstract object known as a “measure” — a nuanced mathematical distinction we have avoided
making in the main text. A is the operator describing population interactions, corresponding to the
integral operator in Eq. (1). Then the growth rate of species x is given by r(x) —A(n)(x), so the
equilibrium condition is r(x) = A(n)(x) for all x in the support of n.

With this introduction, we now rigorously state and prove the two theorems. Let the one-
dimensional niche space X be an arbitrary subset of the real numbers. The Banach space of signed
measures with the total-variation norm is denoted by M(X).

Let Q be an open and connected set in the complex plane C that contains X. Let Z be the linear
space of all functions on X that have a holomorphic extension to . Equivalently, Z can be viewed
as the space of all functions f that are holomorphic in Q and have real values on X. Alternatively,
we consider the linear space Y of bounded holomorphic functions f on Q such that f(z) is real for
all ze X.

Y equipped with the supremum norm is a Banach space; Z equipped with the locally convex
topology of uniform convergence on compact subsets of Q is a Fréchet space equipped with the

metric = 2ip(f—g)
“'pi(f—g
d =) ————~_°2~ 4
(f.8) L p—g) (4)
where
pi(f) =sup{|f(z)| : z € Ki}, &)
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with K| C K, C --- being a sequence of nonempty compact subsets of Q such that K; lies in the
interior of K; 1 and Q = U7 | K;.

A (nonlinear) operator A between two topological vector spaces is said to be compact if A is
continuous and the closure of A(U) is compact for every bounded set U.

The following theorem hinges on Baire’s theorem (Dugundji 1966, Theorem 10.5, p. 250),
which states that in a Baire space a set of the first category has empty interior. As complete metric
spaces are Baire spaces (Rudin 1973, Theorem 2.2, p. 42), we can take V to be either Y or Z in the
following theorem.

Theorem 1. Let r € V and suppose that A : M(X) — V is compact. If there exists a solution n of
r(x) =A(n)(x) forall x € supp(n), (6)

the support of which has a limit point in Q, then in every neighborhood of r there exists an r' such
that Eq. (6) with r replaced by ¥ does not have any solution with a support with a limit point in Q.

Proof. Suppose Eq. (6) holds and supp(n) has a limit point in Q. Then, because of analyticity,
r(x) =A(n)(x) forallx e Q. (7)

V is an infinite-dimensional topological vector space and hence not locally compact. Let U; be
the ball of radius 7 in M(X). Because A is compact, the interior of the closure of A(U;) is empty
for all ¢ > 0. It follows that the range of A is of the first category and hence has empty interior by
Baire’s theorem. As r is an element of the range of A, there exists an ¥/ € V in an arbitrarily small
neighborhood of r such that 7 is not in the range of A, that is, no solution of (7) with r replaced by
r’ exists. Again, by analyticity, ' (x) = A(n)(x) cannot hold in any set with a limit point. O

If r is strictly positive, then the ' of Theorem 1 can also be chosen strictly positive (under a
small extra condition in the case of space Z).

Theorem 2. Suppose that there exists a & > 0 such that r(x) > 8 for all x € X. Then, in the case of
space Y, one can choose r' in Theorem I to be positive. If the closure of X is contained in Q, then
the same is true in the case of space Z.

Proof. Every neighborhood of r in Y contains a ball centered on r and with a sufficiently small
radius € > 0. For € < 9, this ball consists of functions that are positive on X.

In the case of space Z and for X C Q, there exists an index m such that X C K; for all i > m.
Suppose that there exists a & € X such that /(&) < 0. Then

Now2pilf-8) 28 U278 )
d(r/)y=Yy =L =80 5 > >2 5. 8
) = L =0 S B T pi—g) = B 150 ®

But such an # does not belong to a ball centered on r and with a radius € < 2-("~1§. This proves
the theorem. O
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