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Abstract

We give a comprehensive review of Chesson’s coexistence theory, summarizing, for the first time,
all its fundamental details in one single document. Our goal is for both theoretical and empirical
ecologists to be able to use the theory to interpret their findings, and to get a precise sense of the
limits of its applicability. To this end, we introduce an explicit handling of limiting factors, and
a new way of defining the scaling factors which partition invasion growth rates into the different
mechanisms contributing to coexistence. We explain terminology such as relative nonlinearity,
storage effect, and growth-density covariance, both in a formal setting and through their biological
interpretation. We review the theory’s applications and contributions to our current understanding
of species coexistence. While the theory is very general, it is not well suited to all problems, so
we carefully point out its limitations. Finally, we critique the paradigm of decomposing invasion
growth rates into stabilizing and equalizing components: we argue that these concepts are useful
when used judiciously, but have often been employed in an overly simplified way to justify false
claims.

Keywords: average fitness differences, community ecology, competitive advantage, equalizing
effect, growth-density covariance, relative nonlinearity, stabilization, storage effect, theoretical
ecology, variable environment theory

1 Introduction

The theory of species coexistence developed by Peter Chesson and colleagues, often referred to simply
as “modern coexistence theory” (Mayfield and Levine 2010, HilleRisLambers et al. 2012, Letten et al.
2017, Saavedra et al. 2017), is one of today’s leading frameworks in community ecology. From its
initial focus on two species coexisting via the storage effect (Chesson and Warner 1981), it has grown
to encompass multispecies competition in temporally (Chesson 1994) and spatially (Chesson 2000a)
variable environments, with important extensions concerning coexistence in general (Chesson 2000b,
2003). It dispels mistaken ideas about coexistence in variable environments (Chesson and Huntly 1997,
Fox 2013), and replaces them with rigorous theory. It identifies a handful of mechanisms with the
capacity to promote coexistence, and provides a starting point for measuring them empirically (Chesson
1994, 2000a). Furthermore, it provides a straightforward interpretation of coexistence as resulting from
a balance between stabilization and differences in species’ overall competitive abilities (Chesson 2000b,
2003). This in turn has contributed to the resurgence and revision of the niche concept (Chesson 1991,
Leibold 1995, Chase and Leibold 2003, Meszéna et al. 2006, Letten et al. 2017), and a vast wealth of
empirical applications (Angert et al. 2009, Adler et al. 2010, Narwani et al. 2013, Chesson et al. 2013,
Godoy et al. 2014, Chu and Adler 2015, Kraft et al. 2015, Usinowicz et al. 2017, and many others).
It has introduced a new benchmark for the generality and logical coherence of any comprehensive
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theory in community ecology. As such, it behooves community ecologists to understand its methods,
accomplishments, and limitations.

While Chesson’s coexistence theory is widely recognized, its methods and scope are often not
well understood. References to the storage effect and relative nonlinearity are very common in the
literature; by comparison, quantitative treatments are relatively rare. For example, Chesson (2000a),
which proposed the spatial storage effect, has been cited over 350 times according to Scopus, and
many of these citations come from empirical studies—yet we are only aware of one published work
that empirically measures the spatial storage effect using the methods that article proposes (Sears and
Chesson 2007). As a consequence, misuses of these terms are frequent in practice. The disconnect
between the formal theory and verbal formulations of it is well illustrated by the fact that most studies
using terms such as “stabilization” and “equalization” cite Chesson (2000b), even though these concepts
have since undergone an important revision (Chesson 2003). The theory’s scope is also commonly
misrepresented: it is often referred to as simply the stabilizing/equalizing framework, neglecting its
arguably more relevant contributions to understanding coexistence in variable environments. Most
problematic of all, Chesson’s formalism is sometimes co-opted to justify conclusions which either
require great care of interpretation, or are simply not supported by the theory. One such claim is that
stabilization is always increased by reducing the ratio of inter- to intraspecific competition; another is
that Chesson’s theory proves the possibility of the stable coexistence of arbitrarily similar species.

Part of the reason for the aforementioned problems is that learning the theory from scratch is a
daunting task. First, it is scattered across articles and book chapters. The general theory of coexistence
in temporally variable environments is found in Chesson (1994); its generalization to spatial variation
in Chesson (2000a). The concept of a stabilizing mechanism is treated separately in Chesson (2000b)
and Chesson (2003). In a parallel development, Chesson (1990), Chesson and Kuang (2008), Chesson
(2011), and Chesson (2013) develop a very similar concept but in a different context. In addition, the
theory has changed over time. For example, in Chesson (2000b), stabilization was introduced as a
species-level concept; in Chesson (2003), it was framed as a property of entire communities. Existing
reviews cover aspects of the theory, but they either do not derive any of the technical details (e.g.,
Chesson 2008), or cover only parts of the theory (Chesson et al. 2005, Adler et al. 2007, Chesson
2009). On top of this, the sources are difficult reading, and some aspects are either never explained in
sufficient detail to make applications easy, or else their limitations are not clearly outlined. For example,
the scaling factors which partition invasion growth rates into resident and invader contributions have
managed to confound even those familiar with the theory (personal communications). Furthermore,
while the theory is very general, it is not omnipotent. In some cases, especially when species compete
for a large number of resources, Chesson’s theory is less useful than other methods. In other cases, it
simply does not apply: complex dynamics and communities with a large number of species are usually
outside of its grasp. Existing literature does not discuss these limitations in detail, which makes it
difficult for newcomers to see what the theory can and cannot do.

Given that the theory is at the same time influential and arcane, difficult to understand and easy to
misunderstand, and fragmented across time and space, we believe it is in need of a review accessible
to a wide audience. Here we present a self-contained account of the current theory, with emphasis
on the insights it provides while pointing out its limitations and misuses. The review is structured as
follows. Section 2 presents the technical machinery of the theory, with an explicit focus on limiting
factors and an improved way of handling the scaling factors which partition invasion growth rates
into various coexistence-affecting contributions. Section 3 gives the biological interpretation of these
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basic mechanisms. Section 4 reviews the theoretical and empirical advances the theory has facilitated.
Section 5 covers current challenges, limitations, and open questions for the body of theory itself.
Section 6 discusses the merits and problems of decomposing invasion growth rates into stabilization
and competitive advantage terms. Finally, Section 7 summarizes our outlook on the theory’s place in
community ecology.

2 A technical summary of Chesson’s coexistence theory

Chesson’s theory has an arcane reputation to it, which is undoubtedly one reason why it is not more
widely used. Despite appearances, the fundamental ideas behind the theory are rather simple. Starting
from the assumption that environmental fluctuations are small, the theory simplifies ecological models
via quadratic expansions of species growth rates around equilibrium. Next, it averages these growth
rates over the environmental fluctuations; this introduces means, variances, and covariances between
different quantities, which are interpreted as different mechanisms that may promote coexistence. The
theory then examines the growth rate of each species when at low abundance while the other species are
at their resident states, to determine whether all are able to rebound from rarity and therefore coexist.

While the discussion will inevitably be filled with occasionally rather long equations, it involves
no deep mathematics. The mathematically deep part of the theory is mostly concerned with making
sure that the approximations made by the theory are internally consistent, which is covered in e.g.
Chesson (1994) and Chesson (2000a). Here we take this self-consistency for granted and appeal to
intuition in performing the approximations. We include a summary of the basic mathematical tools
needed in Appendix S1.

Below we show step-by-step how Chesson’s framework can be applied to any model designed for
studying the effect of small environmental fluctuations in stationary environments. We first assume that
the community is spatially well-mixed, and extend the theory to spatially variable environments only in
Section 2.6.

2.1 The quadratic approximation of the growth rates
The starting point for the analysis is an ecological community model of the form

%ﬂm@j,cj) (j=1,2,....8), (1)
where n; is the abundance (density) of species j, ¢ is time, S is the number of species, and r; is species
J’s per capita growth rate. This, in turn, is written as a function of density-independent environmental
parameters E; and density-dependent interaction parameters C; (Chesson 1994). The E; may only
contain environmental effects which influence the dynamics but are uninfluenced by it in turn. In
contrast, the C; depend either directly on the abundances 7;, or on limiting (regulating) factors which
are influenced by the abundances. By definition, all density- and frequency-dependent feedback loops
must be exclusively mediated by the C;.!

In Chesson’s works, the interaction parameters are called competitive factors, because they are assumed, by default,
to measure the degree of competition in the system (i.e., increasing C; causes a reduction in ;). Though the interaction
parameters indeed often measure competitive effects, this is not in any way a requirement: since all species interactions must
be mediated via the C}, they may include both positive and negative effects. We therefore do not make the default assumption
of competition in this work.
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Though generalizations are possible (Angert et al. 2009, Kuang and Chesson 2010, Chesson and
Kuang 2010, Stump and Chesson 2015, 2017), for simplicity, in this article we follow the convention
that there is only one E; and C; parameter per species. These are therefore not atomic model parameters,
but combinations of model parameters and exogenous variables. To give an example, we consider a
simple linear resource consumption model with per capita growth rates given by r; = b;F —m;, where
F is some limiting resource, b; is the amount of growth species j achieves on one unit of resource, and
m;j is a mortality rate. Here one cannot identify E; with the density-independent parameters b; and m;
separately. Instead, one may designate £; = —m; and C; = b;F, leading to r; = E; + C;. Alternatively,
one could also choose Ej =0 and C; = b;F —mj, or E; =bj and C; = b;(F — 1) —m; (both also
leading to r; = E; + C;). However, one may not choose E; = b;F and C; = —m; because, although
their sum is still equal to r;, the E; must not depend on the density-dependent limiting resource F.
As seen, the choice of E; and C; is generally not unique (Chesson 1994)—however, while certain
choices may make calculations easier than others, this ambiguity does not influence the final results
(Section 2.8).

A key idea behind Chesson’s coexistence theory is to reduce the complexity of the (arbitrarily
complicated) system Eq. 1 by approximating the per capita growth rate, r;, as a quadratic function of
E; and C;. This is done using a standard Taylor series expansion (Appendix S1). For some models,
the quadratic expansion is exact (see, e.g., Section 2.5 or Appendix S4), but for more complicated
ones, this allows one to capture much of the model’s interesting aspects while keeping them sufficiently
simple to be manageable. It is difficult to overstate how fruitful Chesson’s quadratic expansion has
proven both in elucidating when fluctuations are important for coexistence in general, and uncovering
the role of environmental fluctuations in particular empirical systems—we shall see examples of both
kinds throughout this article.

To perform the Taylor series expansion, one has to know which values of the variables E; and C;
we are approximating around. Any species stably present in its environment has an average long-term
per capita growth rate of zero. Thus, equilibrium growth is a good baseline for the approximation.
We designate “equilibrium” values for the environmental and interaction parameters, E and C7, such
that r; (E]*,C;) = 0. Their values will generally not be unique. For instance, if r; = E; + C}, then any
E; =—Cjleadstor; (Ej,C;‘) = 0. That is, there are infinitely many E7, C; combinations leading to
zero per capita growth—however, choosing a value for one will fix the value of the other (Chesson
1994). Since the goal is to expand the growth rates around E; and C; assuming small fluctuations,
the strategy is to choose E7 to fall near the mean value of E;. Importantly, with Chesson’s (1994)
assumptions, this guarantees that C; will fall near the mean of the C; as well. In general, the closer E7;
and C;f are to the true mean values, the more accurate the approximation will be.

Let us now perform the expansion of the growth rates around E; and C;. The detailed, mathe-
matically rigorous discussion of when and how this can be done can be found in Chesson (1994) and
Chesson (2000a). The quick-and-dirty summary of these results is that as long as fluctuations are
assumed to be small, and E; and C; fall near the means of E; and Cj, then terms whose joint order in
(Ej—E7) and (C; — C7) is larger than quadratic may be neglected. The quadratic expansion, using
Eq. S1.1, thus reads

oL@ . o 1p .
ri(E.C)) & o —Ef) 507 (Ej — E}) + B(C = )+ 587 (€ =€)

+Gi(Ej—Ej)(C;—Cj)

(2)
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(the Oth-order term was r;(E7,C7}) = 0), where the Taylor coefficients

o2 9 Irj )9 9%r;

8rj

= 55 3

are evaluated” at E j=E; and C; = C;. To write Eq. 2 in a simpler form, let us introduce the new
variables

1 )

&= oj(E; — Ej) + 50" (Ej — E})*, 4)
* 1 *
€= Bi(Ci—C)) + 5,7 (Ci =€), )

called the standardized environmental and interaction parameters (Chesson 1994, 2000a). Eq. 2 may
now be written r; ~ &+ € + {;(E; — E7)(C; — Cj), which is simpler than before but problematic
because r; should be expressed as a function of &; and ¢; only. This, however, can be done by
examining the product &%

2 J
~ a;Bj(E;—E;)(C;—C;),

1 1
@%z(%wf%®+M”wrfﬁﬁ<mwwww+2@%q—qf) ©

because all further terms are of higher joint order in (E; — EJ*) and (Cj— C;‘) than quadratic and so can
be neglected (Chesson 1994). Therefore, after introducing y; = {;/(c;B;), Eq. 2 can be written

1y~ 6+ ) 9
the standard form of the quadratic approximation found in the works of Chesson.?

The parameter y; measures the strength of interaction between environmental effects and species
interactions (Chesson 1994). If it is equal to zero, then improving the environment by X units (increasing
& by X) and making species interactions more beneficial by Y units (increasing ¢; by Y) will result in
the per capita growth rates increasing by X +Y units in Eq. 7. So ¥; measures the deviation from this
baseline additive expectation: a positive (negative) ¥; means the growth benefit of species j will be
greater (smaller) than expected. See Section 3 for a biological interpretation of ;.

Most existing discussions of Chesson’s general formalism conclude the quadratic approximation
with Eq. 7. In fact, there is another important step to be done, one which is discussed in Chesson (1994)
for specific types of models, and handled on a model-to-model basis in subsequent works. Here we
make this step fully general. By definition, the €; are density-dependent, inheriting the dependence
from C; via Eq. 5. They are therefore functions of limiting factors Fi, F3,...,F;, which themselves

2Chesson defines the Taylor coefficients B; and /3}2) with negative signs to conform to the usual interpretation of the
interaction parameters measuring competition. While this is perfectly reasonable, it has two downsides: first, the C; may
measure positive interactions as well; second, the juggling of extra negative signs makes calculation errors easier (we speak
from experience). We therefore do not follow Chesson’s sign conventions here, and define everything with positive signs.
Naturally, the final results are insensitive to the sign convention used.

3An alternative derivation proceeds by first defining & = r;(E j-C7) and € = r;(E},C;), and then performing the
expansion in these new variables—this will also lead to Eq. 7 (Chesson 1994, 2000a). Eqgs. 4 and 5 may then be thought of as
quadratic approximations to &; = r;(E;,C}) and €; = rj(E},C;).
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depend on the species’ abundances. We use the term “limiting factor” to refer to any density- or
frequency-dependent variable affecting population growth. Limiting factors can include resources,
predators, refuges, or the species’ abundances themselves. In Chesson’s framework, the interaction
parameters are also expanded to quadratic order in the limiting factors. To do so, we first define
“equilibrium” values for the limiting factors, such that C; as a function of these factor levels is equal to
Cj: o .

Ci(F . F’,....F[)=Cj, 8)

where F ' is the level of the kth limiting factor that makes the jth interaction parameter “equilibrial”
(Chesson 1994). After finding the F, 7/ we expand ¢; around them (Eq. S1.1):

L L L
Z K (F— Fy ZZ Vi (Fe— B (F —F), )

where the Oth-order term %;(F,/, ;. .., F;”) vanished due to Eqgs. 5 and 8, and the Taylor coefficients

o 9%
oF. VM7 9RaF

Pji = (10)
are evaluated at F; = Fk*j . They may be functions of time, since they are not evaluated at E; = E;. This
concludes the approximation procedure for an arbitrary model.

In models with a single limiting factor F, one can simply solve Eq. 8 for F*/, and then perform
the quadratic expansion around that value—see Appendix S2 for an example. When there is more than
one limiting factor however, Eq. 8 does not have a unique solution for the F}, */. Rather, as with E7 and

Cj, the choice of F} s arbitrary, as long as Eq. 8 holds and F}, “/ is close to the mean of Fy. They then
have to be determmed another way—for instance, using a set of equations governing the dynamics
of the Fy; or, if the theory is used to describe an experiment or observation, from measured data on
equilibrial levels of the limiting factors. This difficulty foreshadows a recurring theme in Chesson’s
theory: namely, that it is more useful when there is only one single limiting factor. Subsequently, we
will see further examples for this.

2.2 Time averaging

In averaging temporally, one must assume that fluctuations are stationary—their statistical properties
are constant in time (Turchin 2003). It is also assumed that the characteristic time scale of the
fluctuations is not so short as to make it irrelevant for population dynamics, nor so long as to slide into
other, nonstationary processes (such as Milankovitch cycles), rendering the assumption of stationarity
untenable. With these caveats, the time average of Eq. 7 for any species j reads

T~ 6 +C+76/%; an

=& +C;+ 16 C )+ 1oV (8}, 6))
(Chesson 1994), where the overbar denotes time averaging, cov(-,-) denotes covariance, and we used
Eq. S1.2 to write the average of a product. An important technical result (Chesson 2000a, Appendix
I1I) establishes that if the variance of E; is small, then the variance of C; will be of the same order of
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magnitude. From Egs. 4 and 5, & jand 3 ; are both proportional to this variance. Their product is then
proportional to this small variance squared, which can be neglected. We therefore can write

?j%gj—i—?j—i—}/jcov(éaj,‘fj). (12)
Substituting ¢’; from Eq. 9 into Eq. 12, we get

>

k=11

Vin(Fe — B (F — F7) + ycov(&5,6)). (13)

M=

7.-~é" +Z¢]ka— +
k=1

| =

1

Using Eq. S1.2 again:

Vi (Fe— F NF—-F)

|\[*’]n~

L L
TR E i+ ) O u(F—F Z
= (14)
0V<‘I//k17 F Fk*J)(E _P}*J)>7

HM:N

L
+ yjcov (&}, 6)) + Z cov 9k, Fi Z

where we replaced cov(@ji, Fy — F; 7Y with cov(@jx, Fx), which can be done since F,” ' is a constant
(Eq. S1.3). The mean of the standardlzed environmental parameters é" may be written, using Eq. 4,
as &;=a;(E;— E;)+ 06](- )(E — E7)?/2, which simplifies to &= (z)var( Ej)/2if E} was chosen to
be equal to £ ;.

In case ¢; does not have any explicit time dependence, the coefficients of Eq. 10 will also be

time-independent. Then, after introducing the simplifying notation Vji; = (F; — Fk*" )(F— Fl*j ) for the
covariance matrix of the limiting factors, we have the simplified formula

- L i L . 1 L L
m%<%—zwaﬁ+2%wwzzz]mw+mw@%v a5
k=1 k=1 k=11=1

We have also rearranged the equation slightly: now the first term contains only constants, the second is
linear and the third quadratic in the limiting factors, and the last one is a covariance term.

For simplicity of bookkeeping, from now on we will use this equation instead of Eq. 14. However,
the more general case can always be recovered simply by replacing ¢ and y;; with their time averages,
and yjcov(&;,%;) with the sum of all three covariance terms of Eq. 14 if needed. As will be seen, this
way of writing the growth rates conveniently separates the contributions of different mechanisms to
coexistence.

2.3 Resident and invader growth rates

Chesson’s coexistence theory is based on invasion analysis. Invasion analysis was introduced in ecology
by Turelli (1978), with important subsequent advances in the theory of invasion processes in general
(Schreiber 2000, Hofbauer and Schreiber 2010, Schreiber et al. 2011). When performing invasion
analysis, one species out of the S-species community (the invader) is assumed to be at low density,
such that it is affected by the other species, but it has no effect on its surroundings. This means that
its population dynamics are especially simple: the invader is undergoing density-independent growth.
Moreover, since we have assumed a stationary environment, the invader grows with a constant average
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long-term growth rate. If this long-term growth rate, called the invasion growth rate, is negative or zero,
the species cannot invade: coexistence is lost (Schreiber et al. 2011). However, for positive invasion
growth rates, the species is able to recover from low density with nonzero probability (Turelli 1980). If
we also assume that “low” density means something much smaller than resident densities but still large
enough so that demographic stochasticity plays no significant role, then a positive invasion rate ensures
that the invader can establish itself in the community. If all S species have positive invasion growth
rates, the species can mutually invade each other when they drop to low abundance, and therefore they
are able to coexist. However, if even a single species has a nonpositive invasion growth rate, it cannot
rebound from low density, and coexistence is lost.

Invasion analysis assumes that the resident community, composed of the S — 1 species in the
absence of the invader, eventually settles down to some stationary state after the invader is removed. This
means that all resident species can persist at equilibrium, in a limit cycle, or a stochastic steady state, but
that they must have an average growth rate of zero. It is this stationary state against which the invader’s
long-term low-density growth rate is evaluated. Without this assumption, invaders’ environments would
not be stationary and invasion growth rates would not be well-defined. Although in principle possible,
the theory does not consider what happens when two or more species are simultaneously perturbed
down to the invader state. Though this has ramifications for the theory (Section 5.2), the simplest
assumption is that of a single invader at a time.

With these preliminaries, we write the long-term per capita growth rate of the species assuming
species i is the invader. This proceeds by writing Eq. 15 with the assumption that all quantities are
evaluated when species i is absent and the remaining S — 1 species have assumed their stationary
states. The standardized environmental parameters &’ are insensitive to this distinction, as these are
by definition density- and frequency-independent. However, the limiting factors F;, and by extension
the standardized interaction parameters ¢, will differ depending on the identity of the invader (e.g., if
two species compete for soil nitrate, the nitrate levels will be different depending on which species is
resident unless they have precisely identical nitrate usage). One way to express this in notation is to
add a superscript “—i” to quantities which are evaluated in the absence of the invading species i:

L L L L
RS (g i-Y ¢ijk*J> + Y ouF % Y Y WiV + vicov(E;,6). (16)

k=1 k=1 k=11=1
Keeping track of the “—i” superscripts encumbers notation, so from here on we will omit them unless
they are necessary for avoiding ambiguity. Instead, it should be understood that the limiting factors and
standardized interaction parameters will generally depend on the identity of the invading species. Note
that the Taylor coefficients @k, Yjx, and 7; are evaluated using the (invader-independent) E7, C}, and

Fk*j , so they do not depend on invader identity.

Importantly, the accuracy of the quadratic approximation will generally depend on F, ' falling near
the Fk*J . The reason one should keep this in mind is that the Fk*] are calculated to satisfy the resident
equilibrium condition r;(E7,C; (ij ")) = 0; however, putting a species into its invasion state constitutes
a large perturbation, which may therefore have a substantial effect on Fk_l, potentially making it quite
different from Fk*] . Whether the approximation is ultimately acceptable for the purposes of the model
in question must be ascertained on a case-by-case basis—though see Chesson (1994, Appendix II) for
general guidelines.

If 7; > O for all S species in the role of the invader i, the species can mutually invade and we have
coexistence.
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2.4 Partitioning the sum of invader and resident growth rates

One might think Eq. 16 spells the end of the theoretical part of the framework: we simply evaluate the
invasion growth rates for all species as invaders, and check whether they all turn out positive. However,
further gains are made by considering not only the value of each term in Eq. 16, but also how they differ
between species. For example, knowing that a particular term affects all species equally shows that it
has no impact on coexistence (since no species benefits relative to its competitors), and knowing that a
term is always greater for invaders means it promotes coexistence, since that term gives all species an
advantage when they are rare. To make such comparisons, Chesson (1994, 2000a) considers a weighted
sum of the invader and resident growth rates. Let us introduce constants d]Ti, to be determined later,

and form
1 S
di Z lffl (1 7)

Aslong as d;” i £ 0, the sum is equal to 7; because all resident rates are zero. This expression is further
expanded using Eq. 16 (in keeping with our notational shorthand, from here onward we omit the “—i”
superscripts):
1 S 1 L L
~ J Z dj
ij=1

Z Z VikVin + vjcov(8;,65) [ (18)

l\.) \

L . L
(ij -y ¢ijk*]> + ) ouFi+
=1 =1

Breaking up the sum over all species j into the contribution from the invader i and residents s # i, we
can equivalently write

L L
(éai — Y ouF; ) Z (éas -Y ¢ska*s>
k=1 s#z k=1

Lo L o

s#ik= 1
constant terms, linear terms, Ap;

(19)

L L S L L S d

A

Y Y viViu+Y ), Z Wsleskl Yicov(&, 6+ ) Z%COV(@,%)
k=11=1 sik=11= 1 s 4
quadratic terms, AN; covariance terms, Al;
where each of the collected terms is a sum of invader and resident contributions:

i = r;+Ap; -+ AN; + Al (20)

Here 7/ is the invasion growth rate of species i in the absence of any frequency-dependent effects; Ap;
summarizes fluctuation-independent frequency dependence such as those stemming from resource
partitioning or species-specific predation pressures; AN; is relative nonlinearity; and Al is the storage
effect (more on these in Section 3).

We now determine the constants d;. Our goal is to choose them so that we can eliminate the
linear term Ap;. As we will see, this provides a major simplification to Eq 19 which confers the
theory much of its utility. For this purpose, assume for the moment that there are more species than
limiting factors (i.e., § > L). If that is the case, then ¢, which is an § x L matrix, has more rows than
columns. Treating its rows as separate vectors, with ¢;; being the kth component of the jth vector, we
use the result that having more vectors than components means these vectors are necessarily linearly
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dependent (Appendix S1). This means we can conveniently choose nonzero numbers d; such that they
are solutions to the system of L linear equations

S
Z = (k=1,2,...,L). (21)

While the linear dependence of the ¢ ensures that some of the d; will be nonzero, Eq. 17 still breaks
down if d; = 0, so this procedure can only be performed if d; in particular can be chosen to be nonzero.
We will assume this for now; the case when this is not possible, along with the ensuing ramifications,
are discussed in Section 5.3. However, even when d; # 0, the choice of the d; will not be unique
(Appendix S1). For now, let us assume any one valid choice has been made and move on.

By virtue of Eq. 21, choosing the scaling factors d; this way will cancel the linear terms in F
from Eq. 18. Consequently, the Ap; term will then be absent from Eq. 19. Since calculating the Fy
would entail determining the levels of the limiting factors with species i being the invader, one would
in principle require an extra set of equations governing the dynamics of F;. By eliminating the linear
terms, one does not need to do this anymore. The Vj; and covariance terms still depend on the Fi;
however, we will see that sometimes these quantities can be calculated without a detailed knowledge
of the dynamics of the limiting factors (for an example, see Appendix S4). After canceling the linear
terms, Ap; vanishes from Eq. 19, so Eq. 20 reduces to 7; = r. + AN, + Al.

In the special case of a single limiting factor F', the matrix ¢ reduces to the vector ¢;, and Yy to
y;. The scaling factors may then be chosen as follows (Chesson 1994):

1 ; 1

d'=—, dj=——c—", 22
i (Pi sHi (S— 1)¢s ( )

satisfying Eq. 21 for any species as invader. Eq. 19 then reads

2l *i 1 S (Pi Z) *S
(gi_¢iF )—SfZ*(@@s_(PsF‘)
sHELTS

=

(23)
oot @) - <1 Y peovia ).
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where each bracketed term is now the difference between the invader and the arithmetic average of
the scaled resident values. This transparent partitioning of the invasion growth rates opens up the
possibility for a straightforward interpretation of its terms (Section 3).

As stated before, canceling the linear terms in the limiting factors is only possible if there are
more species than factors. Otherwise this cannot be done, because then the only solution to Eq. 21 is
d; = 0 for all species, leading to division by zero in Eq. 17. The d; may still be used to eliminate a set
of § — 1 limiting factors. This choice will affect our definition of Ap;. For example, if we choose to
eliminate the first § — 1 factors, this reduces Ap; in Eq. 19 to

Z P F i+ Z Z (PskF k- (24)
s#i k=S

This means that only the last L — S+ 1 factors contribute to Ap;. Alternatively, one may eliminate any
S — 1 independent linear combinations of the limiting factors. In either case, since the linear terms in
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F are not actually eliminated, the utility of using the scaling factors in the first place is compromised.
We discuss this problem in more detail in Section 5.4.

As a remark, we note that Chesson (1994, 2000a) used both a different definition and a different
notation for the scaling factors. He introduced g;; = —d%;/d%; evaluated at s = 0, which replaces
dy/d; in Eq. 19. The negative sign is supposed to emphasize that the terms in Eq. 20 are differences
between invader and scaled resident values. While this notation is suggestive, it would only represent a
true difference if all dy/d; values could be chosen negative. This can be achieved for a single limiting
factor F' (Egs. 22 and 23), but in general not for multiple ones—hence we have chosen to abandon
the original sign convention. More problematically, the derivative d%;/d % is purely formal and does
not have a definite value in general, because even when %; can be expressed as a function of %, the
mapping is usually not unique (Chesson 1994). We believe the reason for the use of this derivative
anyway is that original formulations of Chesson’s theory do not explicitly account for the limiting
factors, which are necessary for our approach. Our method using the d; via Eq. 21 (which has been
inspired by Chesson and Huntly 1997, Appendix C) acknowledges the non-uniqueness of the scaling
factors from the get-go, yields the same result as d%;/d%, when the derivative is well-defined, and
works even when it is not.

2.5 Why should one partition the invasion growth rates like this?

One may reasonably ask why we add the scaled resident growth rates to the invasion rate in Eq. 17,
when those are zero by definition. Could we not simply write the invasion growth rate for each species
separately via Eq. 16 and not worry about the d;? One could in fact do that; however, the above
partitioning can yield real insight into coexistence, as we hope to demonstrate with the examples below.

Consider the following minimal model of competition for nest sites: two species have birth rates
b; and mortalities m;, and each of J nest sites may be occupied by one single individual. Then the
probability of an offspring being able to find a nest site for itself is proportional to the fraction F of
empty sites: F = 1— (n; +n2)/J, where n; is the number of sites species j’s individuals already occupy.
The per capita growth rates may then be written as

rj:bijmj. (25)

If b;, mj, and J are all constant, the model outcome can be determined using the R*-rule (Hsu et al.
1977, Tilman 1982): whichever species can tolerate the lower fraction of empty sites F' at equilibrium
wins. What happens though when F is allowed to fluctuate, perhaps due to regular disturbance of the
available sites J or population abundances n;?

For a long time, it was argued that such fluctuations slow down or eliminate the process of
competitive exclusion (Hutchinson 1961, Connell 1971, Huston 1979). This argument is incorrect
however, as can be seen in multiple ways. One is to apply the R*-rule to the time-averaged model
7; = bjF —mj, demonstrating that the winner will be whoever tolerates the lowest number of empty
sites on average (e.g., Fox 2013). Alternatively, following Chesson and Huntly (1997), one may
introduce the quantity H = log(n;)/b; —log(ny)/b,, a scaled difference of the log-densities of the two
species. Using the fact that the time derivative of the log-density is the per capita growth rate, we
have dH /dt = ry /by — ry/ by, the difference of the scaled growth rates. dH /dz being always positive
(negative) means H, and therefore the density of species 1 relative to 2 (2 relative to 1) is always
increasing. Since we assume no abundance can get arbitrarily large (population regulation would kick
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in), this can only happen if species 2 (1) is going extinct. Thus, dH /df can be thought of as the scaled
rate of competitive exclusion. Substituting in the growth rates from Eq. 25 yields

dH . n mp my mp my

dr b1 b =F by F by N by by ’ (26)
from which F has canceled, so dH /dr is literally the difference of the two species’ R*-values.

The fact that dH /dr is constant in this model means that the speed of competitive exclusion
proceeds at the exact same pace at all times, regardless of the value and fluctuations of F. Putting
it differently: in this model, despite appearances, fluctuations actually play no role in coexistence
whatsoever, with both the identity of the winning species and the rate of competitive exclusion being
determined by the four constant parameters by, by, m;, and m.

The two scaling factors 1/b; and —1/b; used in dH /dr are exactly what Eq. 21 would give for d,
and d» in this model, and amount to the same effect of canceling F. The advantage of using the scaling
factors compared to applying R*-criteria to time-averaged models is twofold. First, they tell us not only
the identity of the winning species, but the entire timeframe of exclusion. Second, they can be applied
even when there are multiple limiting factors.

To illustrate how to use the scaling factors when working with Chesson’s theory, we now analyze
Eq. 25 using Chesson’s method. This also provides the simplest possible working example showcasing
how the framework as a whole can be applied. Let us proceed step by step.

Step 1: Choose the environmental and interaction parameters E; and C;. They are not unique, but

one very natural choice is E; = —m; and C; = b;F. The per capita growth rates then read

rj(Ej,Cj) = bjiF —m; = E;+C;. @7

N~
G Ej

We now determine the “equilibrium” values E and C;. We can choose E to be the mean of Ej = —m;;
since the m; are not fluctuating, £ = —m;. By definition, r;(E7,C7}) = 0, therefore E; = —m; fixes
Ci =mj. The F*/ is defined to satlsfy Cj(F*) = C7 (Eq. 8); this equation reads b, F = = m; for this
model from which F*/ =m,/b;. Thatis, F*/ is equal to species j’s R*-value on that resource.

An alternative way of choosing the parameters is E; = b; and C; = F with E} = b;, C} = F*/ =
m;/b;. See Appendix S4 for the model analysis using this parameterization. (Note that in the Appendix,
b; is no longer constant, but a function of time—which means that in addition to the results here, an
extra term for the storage effect also appears. Setting the b; to be constant recovers the result in this
section.)

Step 2: Determine the standardized environmental and interaction parameters &; and ¢;. We first
need to calculate the Taylor coefficients of Eq. 3 for Eq. 27:

8rJ 2) 82rj 8rj (2) 821"j 82rj
T A T A R T T A T 1o (23)
We now evaluate Egs. 4 and 5:
1
&= y(E;—Ej) + S o\ (E; —E})? = 1% (—mj+m;) +0=0, (29)
% 1 &
@ Zﬁj(Cj—Cj)+2ﬁ(2 (C;—=Cj)? = 1% (b;F —m;) +0=b;F —m;. (30)
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The €’; may also be written in the form of Eq. 9. From Eq. 10, we get ¢; = b; and y; = 0. We therefore
have‘fj = bjF—mj = (PJ'(F—F*j).
Step 3: Calculate the time-averaged growth rates. The time-averaged growth rates read

The covariance term ycov(&}, %) is absent because ; is zero (Eq. 28), and therefore so is y; =
Ci/(aiB;))-

Step 4: Calculate the invasion growth rates 7;. This will still be given by Eq. 31, but it is
understood that F is evaluated at the level determined by whichever species is resident. This level
cannot be computed without an extra equation determining the dynamics of F', but as we will see, this
is not needed here.

Step 5: Form weighted sum of invader and resident growth rates. The scaling factors d; are
solutions to the system of linear equations Eq. 21. For this model, there is a single equation with two
unknowns, reading d;@; + d;¢; = 0. The choice d; = 1/¢; and d; = —1/ ¢, satisfies the equation (and is
exactly what Eq. 22 recommends). Eq. 17 then reads, for two species, as

7= ;i(dﬂ”l‘ -l-dS?S) = (]),‘ (;;ll — ;;Z), (32)
where 7, = 0. Using Eq. 31, we get
=0l -o)=o(" % HEE=E, 9

After substituting in ¢; = b; and F*/ = m;/b;, the final form of the invasion growth rates reads

Fi=bi (’Z - ’Z) : (34)
N l

recovering the result that only the species with the lower m/b; (R*-value) will be able to invade and
persist.

As mentioned before, a useful aspect of the scaling factor approach is that it applies in the presence
of multiple limiting factors. For instance, generalizing Eq. 25 to three species competing for two

resources, we have
2

ri=Y bjFi—m; (j=1,2,3). (35)
k=1

Applying Eq. 21, the d; are solutions to the linear system of equations

bi1di +br1dr +b31d3 =0, (36)
b12dy + bapdr +b3prd; =0, 37)

whose general solution is
bxb31 —br1b3
dj = | b11bsy —b12b31 | c (38)
b12by1 — b11b2
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where c is an arbitrary constant. Partitioning the invader growth rates using Eq. 17, we get

13 13 2 - 123 3 d 3 d:
n:dZdjrj=d2d1~<2bjwk—mj)=d.ZZ bk Z 4" “L g 49
i j=1 i j=1 Tk=1j=1 ’

— j=1

0, by Eq. 21

which is independent of the resources F;, demonstrating yet again that fluctuations in resource levels
have no impact on coexistence. Those species which end up with a positive 7; will coexist, with the
other(s) going extinct. For example, if

1 2
bjk: 3 4 N mj; = 1 5 (40)
57

then we get d; = (1, 3, —2) ¢, and substitution into Eq. 39 yields 7; = 6, 7, = 2, and 73 = —3, predicting
the extinction of species 3. Note that one can only use this result if, when moving any of the species
into the invader state, the other two can coexist—otherwise the resident average growth rates will
not be zero, rendering Eq. 17 inapplicable. This has to be ascertained independently. The problems
stemming from the nonexistence of an (S — 1)-species resident stationary state are discussed in detail in
Section 5.2.

2.6 Spatial variation

Up to this point we have looked at community models where space plays no role. Let us now assume
that there are several local populations, their locations indexed by the variable x = 1,2,..., Q. Each
local population has per capita growth rate r;(x), with the environmental and interaction parameters
E;(x) and C;(x) also potentially depending on location. To highlight the effects of spatial structure on
coexistence, we assume no temporal fluctuations in this section.

The growth of each species is still given by Eq. 1, but now the total population abundances n;
are made up of the contributions from each location (n(x) for location x), i.e., n; = Y2 n;(x). The
landscape-level growth rate can then be written as

o
1 dnj 1 d<zx:1 ”j(x)> 1 Q dnj(x)
ri(EjCi) = = = =0 q =5 ) e (41
nj dr Z):]”j@) ! Zy:1”j()’) x=1 !
The term dn; (x)/dr quantifies the change in population density in any location. It can be written as the
change due to births and deaths 7(x)r;(x), plus immigration c;(x), minus emigration e;(x). Thus, the
above formula can be written as

I g dn()
ri(E;,C;) = -
16 ZyQ_lnj()’)le dr

0
= ZyQ_lnj() ;(”j(x)rj(X) +cj(x) —ej(x)) 42)

1 0
0 Z < ZyQ_ n]( ))r’(xHZyQ_]nj() Y (cj(x) —ej(x)).

Y) x=1
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The last term contains the net effect of immigration and emigration across the community. If we
assume that our community is closed, then this term will vanish, since every immigrant in one patch
must have emigrated from another patch. Thus, the landscape-level growth rate is simply the mean of
rj(x) weighted by the relative density of species j at each location. Denoting this relative density by

vi(x) =n;(x)/(Q' XL nj(y)). we have
ri(Ej,C)) Z Vi(x)r(x) = vi(x)r;(x), 43)

where the overbar now denotes spatial averaging (Chesson 2000a). Noting that v;(x) = 1, we expand

the average using Eq. S1.2 as v;(x)r;(x) = r;(x)4+cov(V;(x),r;(x)), where we have a spatial covariance.
The landscape-level growth rates therefore read

ri(Ej,Cj) = rj(x) +cov(v;(x),r;(x)). (44)

The first term in Eq. 44 is the spatial average of the local growth rates (Chesson 2000a). Its
evaluation proceeds in a way that is exactly analogous to the purely temporal case. The environmental
and interaction parameters E;(x) and C;(x) now have spatial dependence, as do the F;/(x). The Taylor
coefficients of Eqs. 3 and 10 are evaluated using these spatially equilibrial values of the limiting factors.
Like in the temporal case, it is assumed that higher-order terms in the (spatial) variance of E;(x) and
Cj(x) are negligible. Therefore, in the case of pure spatial variation, the form of the invasion growth
rate for the invader i corresponds to Eq. 20:

ri(x) = r{ + Ap; + AN; + AL, (45)

where it is understood that each term represents a spatial average. The coexistence mechanisms of the
temporal case thus have spatial analogues: AN; is the spatial relative nonlinearity, and Al is the spatial
storage effect (Chesson 2000a).

The covariance term of Eq. 44, on the other hand, is something that has no temporal analogue.
This growth-density covariance (also called a fitness-density covariance; Chesson 2000a, Melbourne
et al. 2007, Shoemaker and Melbourne 2016) contributes positively to the invasion growth rate if the
relative abundance of the invader is larger in locations where it can (locally) grow faster. Analogous to
Ap;, ANj;, and Al its contribution to invasion growth rates can be written

s
AK; = cov(vi(x),ri(x)) + ; ;leOV(Vs(x)a rs(x)). (46)

Thus, the full form of the invasion growth rate reads

i = ri+ Ap; + AN; + Al + Ax;. 47)

2.7 Community-level stabilization and competitive advantages

For a single limiting factor and no spatiotemporal variation, we expect that one species will outcompete
all others (Armstrong and McGehee 1980, Meszéna et al. 2006, Pasztor et al. 2016 chapter 7). In
Chesson’s theory, this is expressed by Egs. 20 and 47 reducing to 7; = r} (given by the first bracketed
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term of Eq. 23). As all quantities encoded in r} are hard constants which do not change their values
depending on the identity of the invading species, only the one species with the largest 7/ can persist:
coexistence is impossible unless some other mechanisms contribute to the invasion growth rates of
the species that would otherwise be excluded (Chesson 2000b). These “other mechanisms”, both
fluctuation-dependent and -independent, are encoded in the Ap;, AN;, Al;, and Ak; terms. For species to
coexist, these terms must be large enough to overcome the r/-disadvantage of all losing species in the
absence of the mechanisms.

To give a precise meaning to this line of intuitive reasoning, a weighted average A of the invasion
rates is defined,

17
=—-) 48
S0 7 @9

where it is important to stress that the summation goes over all species as invaders (Chesson 2003). The
¢; are given by Eq. 10 as usual, taking into account that there is only one limiting factor (in the absence
of coexistence-enhancing mechanisms), so the matrix ¢;, reduces to the vector ¢;. As long as all ¢; are
positive (and they can be made so if the single limiting factor is a resource or predator shared by all the
focal species), a negative A indicates that stable coexistence is impossible, because it means that at least
one species has a negative invasion growth rate. On the other hand, for A > 0, it is possible to have
coexistence, though of course there is no guarantee: if two species have 71 /¢; =3 and 7, /¢ = —1,
then A = (3 —1)/2 = 1 but the second species still cannot invade. The quantity A therefore, while
not a foolproof measure, is still at least an indicator of how strongly stabilized coexistence is in the
community as a whole.

Substituting Eq. 47 into Eq. 48, we get

OJ \

S ~ — —~ o~ —~—
Z r+Api+ANi+AI,-—|—AK,-):r’+Ap+AN—|—AI+AK, (49)

where tildes denote weighted averages over all S species as invaders (17 = l \ 7/ 9; and so on).
We now clarify the rationale behind the factors 1/¢; in Eq. 48. With their use, the community average
r' is equal to zero as long as the scaling factors d; have been chosen according to Eq. 22. Substituting r;
from the first bracketed term of Eq. 23 and using the simplifying notations w; = (éa —Q;F /9 ! and
W = Zf-:l w;, We can write

S I’; 1 N (g (I),F*l) N (bﬁ ¢SF*S‘>
Yo, sk ;

=17t l:l

1 ) 1 s S N 1 S S

:E ;Wi—sj;;él s ; ﬁlzzl SZZIWS—W,' (50)
1 S 1 S S S S 1

:S[,_le"—li_zlé“ Zl ] [ -] o
2 f

which is indeed zero. Eq. 49 therefore simplifies to

A =Ap +AN +Al + Ak, (51)
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containing the sum of the weighted averages of only those terms which can potentially contribute to
coexistence (Chesson 2003): fluctuation-independent mechanisms (Ap) relative nonlinearities (AN ),
storage effects (Al), and growth density covariances (AK) It is important that the r, cancel from any
notion of stabilization. The r} terms contain all density- and frequency-independent factors, for instance,
imposing an extra mortality rate on a species will sometimes only affect its 7. Such an extra mortality
should never show up in a stabilization term, which is supposed to measure all those effects acting to
overcome the extra mortalities to promote coexistence.

Having defined the stabilization term A as the average of the scaled invasion growth rates, one may
express the invasion rates in terms of their difference from this community average. In mathematical
terms, 7;/¢; = f; + A, where f; is the difference from the average for species i:

fi= a—A—r i+ (Api —Ap) + (AN; — AN ) + (AL — AI) + (AK; — AK). (52)
4
The f; being the difference from the average A means that the f; always sum to zero.

Chesson called f; the average fitness difference term (Chesson 2003, Yuan and Chesson 2015). It
has since been called “relative fitness” and “relative fitness difference” (Carroll et al. 2011), “competitive
ability difference” (Mayfield and Levine 2010), and simply “fitness” (Cadotte 2007, Adler et al. 2010).
An effect or process bringing the f; closer to zero was coined an equalizing mechanism (Chesson 2000b,
2003) or an equalizing effect (Loreau et al. 2012; see their analysis for why this term is actually more
appropriate than calling it a mechanism).

The above concept of “fitness” should not be confused with the word’s established evolutionary
meaning. In evolutionary biology, the general definition for the fitness of a species i is its long-term
average growth rate, 7; (Metz et al. 1992); or, in case 7; is evaluated with species i in its invasion state, it
corresponds to species i’s invasion fitness (Geritz et al. 1998). We believe it is important to distinguish
evolutionary fitness from the concept defined in Eq. 52. Methods of evolutionary analysis such as
adaptive dynamics (Geritz et al. 1998, Meszéna 2005) are based on invasion analysis just like Chesson’s
theory. The two frameworks may thus fruitfully combine, whereby Chesson’s theory is used to describe
ecological scenarios and adaptive dynamics to predict their evolutionary trajectories. But then the two
conflicting concepts of “fitness” are bound to cause confusion.

For this reason, we will call f; the single-factor competitive advantage (competitive advantage, or
just advantage, for short) of species i. The “single-factor” in the name is a reminder that f; is evaluated
with a single focal limiting factor in mind; “competitive” expresses the fact that in the absence of
coexistence-affecting mechanisms (Ap; = AN; = Al; = Ak; = 0) only the species with the largest f;
can persist; and “advantage” makes it explicit that the concept is community- and context-dependent
(i.e., having an advantage is always relative to who the other competitors are—see Section 6.2 for a
discussion of this point).

Using the f;, the role of A as the community-level stabilization becomes more clear. Since
7i/9; = f; +A, a species has positive invasion growth rate if its competitive (dis)advantage boosted
by the stabilization term A is positive. In the community context: if A is large enough so that
min(f;) +A > 0, then all invasion growth rates are positive and we have coexistence. In words,
coexistence requires that the stabilization A is able to overcome the competitive disadvantage of the
species with the most negative f; (Yuan and Chesson 2015). In this way, the quantities A and f; provide
one possible mathematical realization of the intuitive line of reasoning stated at the beginning of this
section.
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As a historical remark, it should be noted that there has been an evolution in the concepts of
stabilization and competitive advantages. Chesson (2000b) originally identified the advantage term
with 7./ ¢; and stabilization with all the rest of the terms in Eqgs. 20 and 47 scaled by 1/¢;. Stabilization
was therefore a species-level as opposed to community-level metric. This was later updated (Chesson
2003, Yuan and Chesson 2015) to the formalism described above, where stabilization is defined at
the level of the community. To add to the confusion, there is yet another way of defining these terms,
inspired by MacArthur’s consumer-resource model (Chesson 1990, Chesson and Kuang 2008, Chesson
2011, 2013). This model can be cast in the Lotka—Volterra form

S
ri=b;— Y ajm, (53)
k=1

where n; and b; are species j’s density and intrinsic growth rate, and a j is the reduction in species
J’s per capita growth rate caused by one unit of density of species k. The competitive advantage ratio
fj/ fi and stabilization A are then given by

fi _bj [aai; Y T (54)
fo b\ ajjaj’ ajjagk

(1 — A is also known as the “niche overlap index”’; Pianka 1973, Chesson 2011, Pasztor et al. 2016
p. 211). Eq. 54 only applies to Lotka—Volterra and some related models however, such as the annual
plant model (Godoy and Levine 2014, Saavedra et al. 2017). Worse, it can only be used to evaluate
coexistence between two species. This two-species coexistence condition reads 1 —A < f;/fi <
1/(1—A), arelation that has been known for a long time (Vandermeer 1975, Chesson 1990, Godoy
and Levine 2014). Carroll et al. (2011) did propose a generalization of Eq. 54 to several species, but
showing that their method produces consistent results is ongoing work.

Despite the conceptual evolution of A and f; in the literature, most studies still cite Chesson
(2000b) when referring to stabilization and competitive advantages: to-date, it has received more than
2200 citations according to Scopus. In contrast, Chesson (2003), which presents the currently most
up-to-date version of the decomposition, has only about 50 citations. Also, for some reason, even
though Chesson (2000b) is the most cited method, the most commonly used one is the method based on
the Lotka—Volterra equations—even by those articles which cite Chesson (2000b) when introducing the
concepts of stabilization and competitive advantages. Here we will rely on the most recent definition
(Chesson 2003) given by Egs. 48 and 52, with community-level stabilization and applicability to an
arbitrary number of species.

2.8 Parameter ambiguities

Having covered all salient technical details of Chesson’s theory, one may justifiably worry that it is
fraught with seemingly arbitrary parameter choices. The choice of the environmental and interaction
parameters E; and C; is not unique. Once they are chosen, one still needs to pick a suitable £ and C7,
which are also not unique. Designating the limiting factors is not unique. Next, the equilibrial levels of
the limiting factors, Fk*J (the level of factor k for species j), have to be determined via Eq. 8—but this
equation only has a unique solution if there is just a single limiting factor. Finally, the scaling factors
d; are solutions to the system of linear equations Eq. 21, and since the system can only be usefully
applied if it is underdetermined (more unknowns than equations), the solution is again not going to be
unique. Let us comment on each of these ambiguities in turn.
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The non-uniqueness of E; and C; is not particularly problematic. Though the form of the quadratic
expansion in Eq. 2 might change, what is really important is the dependence on the limiting factors,
governed by Eq. 9—but then any intermediate ambiguities stemming from different choices of the
C; will ultimately cancel due to the chain rule. However, some terms in the quadratic approximation
may be interpreted differently depending on this choice. For example, a crude but readily available
parameterization for any model is E; = 0 and C; = r;. With this extreme choice, cov(&}, ;) will
always be zero (no storage effect!), but the covariances do not, of course, disappear: they will instead
be mediated by the other covariance terms in Eq. 14. The final results will be exactly the same, though
their verbal descriptions may differ depending on parameterization.

Second, in choosing E and C7, one should keep in mind that the closer these quantities are to the
actual mean values E ; and C;, the more accurate the quadratic approximation will be. We therefore
give the explicit recommendation to always choose E = Ej (which is easily calculable, since E| is by
definition density- and frequency-independent), and then calculate the corresponding C’; by solving
ri(E7,C;) = 0, eliminating this ambiguity altogether.

Third, there is ambiguity in defining the limiting factors Fj. This is inevitable. For instance, if
species are limited by a resource, one may designate the limiting factor both as the amount of resource
itself or, alternatively, as the degree of depletion of the resource. The final results will be insensitive
to the choice made—however, some choices may be mathematically more convenient than others.
One should therefore strive to make the problem as simple as possible (see Barabads et al. 2014 for an
in-depth discussion).

Next, the Fk*" are fully determined by Eq. 8 only if there is one single limiting factor in the system.
Otherwise, one cannot say much above and beyond what we stated in Section 2.1: one may use the
equations governing the limiting factors, or measure their values. This ambiguity is a true weakness
that must be addressed on a problem-to-problem basis.

Finally, in choosing the d;, one should keep in mind that their purpose is to cancel the linear terms
in the limiting factors. For a single limiting factor, we recommend using the standard Eq. 22 (Chesson
1994), once again eliminating any ambiguity. For multiple factors, as long as there is just one more
species than factors (L = S — 1), the solution to Eq. 21 will be unique up to a multiplicative constant,
and since Eq. 19 depends only on the ratios of the factors, this constant will cancel. For multiple factors
but with 1 < L < §— 1, no such quasi-uniqueness holds for the solution of Eq. 21—but for the purposes
of eliminating the Ap; term, any choice with nonzero d; " will work. By Eq. 17, the actual invasion
growth rates themselves are insensitive to the values of the d;, so the final results are unaffected by this
ambiguity. However, the interpretation of Eq. 19 may of course be sensitive to the particular choice
made—see Section 5.4 for subtleties.

In summary: despite appearances, the theory is not nearly as ridden with arbitrary choices as it
may first appear. With proper care, the ambiguities of parameterization are either eliminated, or else
are irrelevant to the final results. The one exception is Fk*J for multiple limiting factors, which usually
cannot be chosen without the governing equations for the Fj. This makes the theory considerably less
convenient for analyzing models with multiple limiting factors.

3 Interpreting the terms of the partitioned growth rate

As seen in Egs. 20 and 47, Chesson’s coexistence theory partitions the invasion growth rates into four
or five distinct terms: a combination of fluctuation-independent terms r, and Ap;, relative nonlinear-
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ities AN;, storage effects Al;, and (in spatial models) growth-density covariances Ax;. While such a
classification scheme may at first appear scholastic and contrived, this is in fact not so: each term is a
direct consequence of the quadratic approximation scheme of Eqgs. 7 and 9. Therefore, to this quadratic
approximation, all contributions to the invasion rates are cleanly partitioned into only these five terms
accounting for all possible mechanisms. Here we review the standard interpretations of these terms, and
how they may contribute to maintaining coexistence. An important caveat is that these interpretations
all rely on Eq. 23—which only holds when all but a single limiting factor are amalgamated into the Ap;
term. We therefore make this assumption here, and will consider the complications caused by multiple
explicitly handled limiting factors in Section 5.4.

The two variation-independent terms r; and Ap; describe any mechanism in which an invader
experiences less density dependence on average than residents (Chesson 1994). The r; quantify
differences in performance without frequency dependence: if one species is more adapted to the
environment than another (i.e., &; > &, for most residents), then those terms will be positive. In turn,
Ap; measures effects that can help all invaders. It encodes the effect of classical coexistence mechanisms
which do not depend on spatiotemporal fluctuations. Such stabilizing effects typically occur because
species are regulated by different limiting factors. Examples include coexistence via partitioning of
resources (as in standard consumer-resource models such as the MacArthur consumer-resource model
or the Tilman model; MacArthur 1970, Tilman 1982), and via differential predator pressures leading to
reduced apparent competition (Holt 1977). Unlike the other mechanisms, those contributing to r; and
Ap; operate within a particular time and place, and do not require multiple observations across many
time points (McPeek and Gomulkiewicz 2005).

In Chesson’s works, Ap; is generally not discussed (but see Kuang and Chesson 2010, Chesson
and Kuang 2010, Stump and Chesson 2015, 2017). The reason is that most of Chesson’s works assume
that there is just one single limiting factor, in which case the scaling factors d; are chosen to eliminate
Ap;. Chesson’s theory was originally designed to answer the question: what is the role of fluctuations
in maintaining coexistence (Chesson and Warner 1981, Chesson 1994)? Since a large number of
limiting factors allow for coexistence via well-understood classical mechanisms, the simplest and most
critical test of a theory of coexistence in variable environments concerns the case when there is just
one limiting factor—i.e., when classical mechanisms would not allow for diversity. While this is a
perfectly valid point, in some cases a combination of many distinct limiting factors and also temporal
fluctuations contribute to invasion growth rates. For this reason, it is important to retain the Ap; term
when discussing coexistence in general.

Relative nonlinearities, AN;, occur through differential responses to the variance of the limiting
factors. As seen in Eq. 23, AN; is proportional to the difference in resident and invader y;, which
describe how the standardized interaction parameters depend on a single limiting factor F' in a nonlinear
way (cf. Eq. 9). As such, they are equal to zero whenever the ¢; are linear functions of F', making
AN; zero as well. Under purely temporal variation (whose analysis originally gave the mechanism its
name), the same happens if the resident and invader ¢’; have the exact same nonlinear dependence on F,
making y; equal between the two. Therefore, AN; is nonzero only if the interaction parameters of the
species are not just nonlinear functions, but differently shaped nonlinear functions of the limiting factor.
This explains the etymology behind the perhaps otherwise puzzling nomenclature “relative nonlinearity.”
Examples of biological mechanisms leading to such an effect include predators with different handling
times being affected differently by fluctuations in prey densities (Armstrong and McGehee 1980), and
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long-lived species being less harmed by a year of poor recruitment than shorter-lived ones (Chesson
2003). See Appendix S3 for a simple model of relative nonlinearity.

For relative nonlinearities to affect coexistence, the variance in density dependence must differ
depending upon which species is the invader (Chesson 1994, 2009). If it did not, then variation
would simply help one species and hurt the other, without promoting coexistence overall. Levins
(1979) referred to this effect as “consuming the variance”, because for it to promote coexistence, the
species who benefits from variation in the limiting factor must decrease this variance, as resident, more
than its competitors—which could occur if the predator with the fastest handling times also dampens
predator-prey fluctuations (Armstrong and McGehee 1980).

Storage effects, Al;, depend on the covariance between species’ environmental and interaction
parameters, cov(&},%;), and the interaction coefficient y; (Eq. 23). It will be nonzero if periods of
beneficial environmental conditions (high &) coincide with periods of beneficial interactions (high &),
such as increased benefit from mutualists or reduced pressure from competitors. One way to achieve
this for all species simultaneously is for them to partition time as a “resource” axis. Suppose two bird
species compete over nest sites. Without temporal fluctuations, whichever species is better on average
at acquiring nest sites will outcompete the other. However, if the environment is seasonal with wet
and dry seasons, and one species is a wet-season specialist and the other a dry-season specialist, then
both of them will experience good environments exactly when the other species is unable to perform
well—that is, good environments coincide with reduced competition, creating a storage effect (Barabds
et al. 2012a). Real-world examples include annual plants having different germination rates that depend
on precipitation (Angert et al. 2009, Holt and Chesson 2014), phytoplankton with different growth rates
depending on temperature (Eppley 1972), and seedling recruitment depending in part on temperature
(Grubb 1977)—each of which have been shown to produce storage effects (Chesson 1994, Miller and
Klausmeier 2017). Appendix S4 presents a simple example for a model of coexistence via the storage
effect.

For the storage effect to enhance coexistence, one of two other conditions must be true (Chesson
and Warner 1981, Chesson 1994): either the invader’s 7 should be positive and cov(&;, ;) be greater
for the invader than the residents; or the other way round—the invader’s ¥; should be negative and
residents should have a larger covariance term than the invader. Let us discuss the first of these scenarios
(but see Chesson 1994 for an example of the latter). Imagine that & is determined by the availability
of resources, and &’; represents an organism’s ability to take up resources. In this case, cov (&}, €;) will
usually be negative for residents, because there will be resource shortages when they are most able to
capture resources (Miller and Klausmeier 2017). For example, if many plants germinate, free space
and water will be scarce; if plankton grow rapidly, they will likely consume the available nitrogen,
or block the light. Because the invader is too rare to directly affect the resources, cov(&j, €;) will be
less negative for the invader.* In turn, v; will be positive if there is some way to “store” the effects
of good times, to get organisms through bad ones (Chesson 1994; note that since Chesson’s sign
convention differs from ours, his y; is negative whenever ours is positive). Many bet-hedging strategies
will produce this effect. They typically occur if organisms have a long-lived adult stage or a dormant
stage that is relatively unaffected by both competitive and environmental conditions (Chesson 1994,
2000a). For example, seedling survival in tropical trees is highly sensitive to environmental conditions

4In most former cases (e.g., Chesson 1994, 2000a, Kuang and Chesson 2010, Miller and Chesson 2009), % is a measure
of the level of competition, so that increasing %; reduces 7;. As such, the interpretation is reversed: If many plants germinate,
competition will increase, and thus cov(&;, ;) will be positive for residents and less positive for invaders.
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and neighbor density, but adult tree survival is not; thus, a high bout of recruitment will be “stored” in
the adult population for decades—expressed mathematically by the species having a positive y;. When
these two factors occur together, invaders are more likely to experience low competition during their
best times (e.g., nutrients are more plentiful when temperatures are ideal for growth), and they can
store the benefits of good times to get through times of high competition (e.g., low nutrients) and poor
environmental conditions (e.g., extreme temperatures).

Spatial relative nonlinearities and spatial storage effects are mathematically identical to their
temporal counterparts. However, differences between space and time cause them to operate slightly
differently. For example, living longer does not alter the impact of spatial variation in competition
(Chesson 2000a). Thus, lifespan differences will not produce spatial relative nonlinearities, even though
they can produce temporal ones. Instead, spatial relative nonlinearities may be generated by differences
in dispersal (Snyder and Chesson 2004) or the handling time of prey (Wilson and Abrams 2005). In a
spatial storage effect, space itself is often the bet-hedging strategy that generates storage (y;)—thus,
annual plants with seed dormancy can “store” the benefits of good habitat, though they could not store
good years (Chesson 2000a). However, despite these small differences, the mechanisms work basically
the same way: spatial relative nonlinearities promote coexistence if the species who benefits from
spatial variation reduces it, and spatial storage effects promote coexistence if &; and €; covary spatially
in a way that benefits the invader. For instance, if an environment has dry and wet patches, with a dry-
and a wet-adapted species competing over the landscape, then the invader will find that competition is
weaker (higher ;) exactly where its preferred patches are (higher &), since its competitor is more
concentrated in the other patch type.

Growth-density covariances, Ak;, quantify how spatial variation in population density affects
coexistence (Chesson 2000a). The invasion rate of individuals in a given area will vary across the
landscape. If a population is concentrated in favorable locations, then it will grow faster than if it were
spread uniformly across the landscape. A recent study (Stump and Chesson 2015) has also examined
growth-density covariances in more depth, by partitioning them into a covariance between species
interactions and density, cov(v;(x),Cj(x)), and the covariance between environmental conditions and
density, cov(Vv;(x),E;(x)). A simple model of purely growth-density covariance-mediated coexistence
is presented in Appendix S5.

For growth-density covariances to promote coexistence, invaders must be more concentrated in
favorable locations than residents; i.e., cov(Vv;(x),r;(x)) must be greater for invaders compared to
residents. One way this can occur is if species are distributed differently across the landscape, such
as insect species laying eggs on different ephemeral resources (Chesson 2000a). A very rare species
can be relatively abundant in a given location even if it is rare in absolute terms; the same cannot be
said for a common species. Thus, if the species are segregated, competition will be low where the
rare species is relatively abundant, and will be high where the common species is relatively abundant.
Additionally, if conditions are stable over time, then rare species will often build up where conditions
are most favorable, thus leading to a higher growth-density covariance for the invader (Chesson 2000a).

4 How Chesson’s coexistence theory has contributed to ecology

Chesson’s coexistence theory is a framework theory. Similar to the theory of structured populations
in population ecology (Caswell 2001) or the Price equation of evolutionary biology (Frank 2012), it
is tautological in the sense that its results hold for any dynamical system that can be parameterized
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via Eq. 1 and approximated quadratically as in Section 2.1. Its utility, just like in the other two cases,
should not be judged by its “truth” (which is guaranteed by its logical structure alone), but whether the
perspective it offers leads to a fruitful research program. In fact, Chesson’s theory has proven useful for
many problems in community ecology, both for clarifying theoretical questions and for interpreting
empirical research. Here we summarize these advances.

4.1 Theoretical analysis of particular coexistence mechanisms

Chesson’s coexistence theory has allowed in-depth study of how particular interactions affect coex-
istence. Temporal and spatial (habitat) partitioning have been thoroughly examined, as they are the
very mechanisms the theory was originally developed to understand. For example, a temporal storage
effect can happen if annual plants partition the timing of their germination (Chesson 1994) and/or
growth (Angert et al. 2009), if coral reef fish partition their spawning times (Chesson and Warner
1981), if phytoplankton temporally partition their resource uptake (Miller and Klausmeier 2017), if
plants partition their responses to temporally varying disturbances (Miller and Chesson 2009, Miller
et al. 2012), or if trees temporally partition their seedlings’ competitive ability (Chesson 2003). In
each case, the temporally varying effect generates the standard environmental parameters &}, and
species can coexist if residents generate less competition when conditions for the invader are most
favorable. Similarly, a spatial storage effect and growth-density covariance can be generated if trees
spatially partition their regeneration niche (Chesson 2000a, Stump and Chesson 2015), or if annual
plants spatially partition their germination rates (Chesson 2000a, Snyder and Chesson 2003). In each
case, habitat generates the spatially-dependent environmental parameter, which affects coexistence if it
covaries with competition (for a storage effect) or population density (for a growth-density covariance).

Predation has also been thoroughly studied using Chesson’s theory. Earlier work had generally
concluded that generalist predators tend to undermine coexistence (Holt 1977), while specialized
predators tend to promote it (Grover 1994). Since then, studies have shown that predators are capable
of generating a diverse set of mechanisms. In essence, predators are a limiting factor (i.e., an Fg,
contributing to %), and thus can produce any mechanism. If predators have specialized behavior, they
will generate a variation-independent mechanism contributing to Ap; (Chesson and Kuang 2008, Stump
and Chesson 2015). However, specialist predators have a much weaker effect on stability if they can
always be found near adults of their preferred prey (Stump and Chesson 2015), a phenomenon often
called distance-responsive predation or the Janzen-Connell effect (Janzen 1970, Connell 1971, Comita
et al. 2014). In a variable environment, generalist predators can generate a storage effect if they have a
rapid behavioral (Chesson and Kuang 2010) or numerical (Mordecai 2014) response to their preys; i.e.,
if their effect covaries with &;. However, if they respond slowly to their prey, then there will be little
or no correlation between environmental conditions and predation (leading to cov(&},%;) ~ 0), and
thus no storage effect (Kuang and Chesson 2009). Also, if the residents can satiate their predators in a
good year, but invaders cannot, then this can create a negative storage effect, undermining coexistence
(Stump and Chesson 2017). Additionally, predator-prey cycles (i.e., variation in F;) are capable of
promoting coexistence via relative nonlinearity (Chesson 1994, Chesson and Kuang 2008). Finally,
competition-predation tradeoffs are likely to affect both Ap; (Kuang and Chesson 2008) and r; (Stump
and Chesson 2017).

The theory has also been used to better understand the impact of temporal disturbances on
coexistence. Many once believed that disturbances promote diversity by removing biomass, thereby
reducing competition between species (Hutchinson 1961, Connell 1971, Huston 1979). One of the
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theory’s major accomplishments has been disproving this claim (Fox 2013), as we discussed in
Section 2.5. Rather, disturbances can only promote diversity if they create opportunities for temporal
niche differentiation (Chesson and Huntly 1997, Barabds et al. 2012a), manifesting either as relative
nonlinearity or a storage effect. For example, if disturbances affect species differently, then those
(density-independent) disturbances are encoded in the &’;, needed to produce a storage effect (Miller
and Chesson 2009, Miller et al. 2012). Disturbances may also have nonlinear effects on population
growth, and can help generate the variation needed to generate relative nonlinearity (Roxburgh et al.
2004, Miller et al. 2012). Finally, disturbances can also generate growth-density covariances, as shown
by Snyder (2008) and Shoemaker and Melbourne (2016).

4.2 Aiding our thinking about community processes

The ideas of Chesson’s coexistence theory have been used to understand how broader patterns in
ecology may operate, even in the absence of specific models. This may be typified by the verbal model
in Butler and Chesson (1990), which describes how sessile marine animals could coexist on reefs, and
suggests what would need to be measured to test these ideas. For example, they suggest that species
may coexist if recruitment varies over time. To test this, ecologists would need to measure which
recruitment parameters vary over time (var(&7)), how much those parameters differ between species
(cov(&j, &), the link between those parameters and competition (cov(&},€j)), and what factors could
lead to a nonzero ;.

Such a qualitative approach to testing was performed by Sears and Chesson (2007), who examined
whether two Chihuahuan annual plants could coexist via a spatial storage effect. They used a neighbor-
removal experiment to quantify cov(&(x,t), €j(x,t)). They found that this covariance reduced flower
production in the numerically dominant species by about 20%, but had no effect on a species that
recently became rare. This 20% does not directly translate into a spatial storage effect—that would
require quantifying ¥;, and the relationship between flower production and 7;—however, it suggests
that habitat partitioning in this system is less important than temporal partitioning, which would give
invaders a 40% boost under pairwise interactions (Chesson et al. 2013).

Another important example concerns the clarification of ideas related to phyloecology. Closely
related species are sometimes ecologically similar (Violle et al. 2011, Novotny et al. 2006; but see
Narwani et al. 2017 for counterexamples). Because of this, many have claimed that more closely
related species are less likely to coexist (Webb et al. 2002, Violle et al. 2011). However, Mayfield and
Levine (2010) pointed out that ecologically similar species have both low stabilization and a similar
competitive advantage—thus, knowing whether two species are related will not tell one whether those
species will coexist. If relatives are ecologically similar, this could have two effects at the community
level (Stump 2017). First, it will likely have an advantage-equalizing effect (i.e., f; values will be
closer to zero), since strong competitors will experience heavy competition if their close relatives are
also strong competitors. Second, it will make the community less stabilized overall (A will be lower),
because a species that becomes rare will be replaced by its closest relatives, making it more difficult
for the species to recover. Interestingly, this means that while phylogenetic signal is uninformative
about two-species interactions, it is informative about multispecies ones at the community level (Stump
2017).

Qualitative insight from the theory has also been used to understand how functional traits affect
coexistence (Violle et al. 2011, D’ Andrea and Ostling 2016). Adler et al. (2013) examined whether
commonly measured traits are likely to generate any of the mechanisms summarized by the terms in
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Egs. 20 and 47. They pointed out that many studies have shown traits varying along gradients (e.g.,
specific leaf area is often correlated with nutrient abundance), suggesting that spatial storage effect and
growth-density covariance are occurring. However, they also point out that no study has specifically
linked traits to organismal performance (i.e., specific leaf area has not been strongly connected to &);
without this link, a spatial storage effect will not be possible.

4.3 Empirical tests of the strength of coexistence

A major advantage of Chesson’s coexistence theory is its ability to quantify how strongly particular
mechanisms contribute to coexistence. A great illustration of this is found in two studies which
examined how differences in germination lead to coexistence between desert annual plants. In the
Chihuahuan (Chesson et al. 2013) and the Sonoran (Angert et al. 2009) deserts, yearly differences
in germination were found to produce a storage effect whereby each species’ invasion growth rate is
increased by approximately 7; ~ 0.06 and 7; = 0.05 per year, respectively.

Usinowicz et al. (2012, 2017) measured the storage effect in several forests using parameterized
models. Trees vary their seed production from year to year, and these studies suggested that such
variation produces a storage effect. The storage effect was measured using a novel method that is
not exactly comparable to those in Angert et al. (2009) and Chesson et al. (2013). With that caveat,
they found that the storage effect had a pairwise stabilizing effect ranging from about 50% (Bonanza,
Alaska) to about 65% (Barro Colorado Island, Panama). Their model assumed that seedlings experience
strong interspecific competition in their first year of life—an assumption for which there is mixed
evidence (e.g., Johnson et al. 2012). Our own preliminary simulations suggest that removing this
assumption weakens the storage effect by about half. However, the qualitative results are the same and
still surprising even if the effect sizes are weakened, because they suggest that the storage effect is
nearly as strong in tropical forests (where it has mostly been ignored) as it is in desert annual plants,
where it is seen as a dominant mechanism.

Adler et al. (2010) applied Chesson’s methods to perennial plant species in Idaho, USA. They
found that invasion growth rates were large and positive for all species. Moreover, when the stabilizing
mechanisms were “switched off” (which cannot be done in nature but is easily done with the empirically
fitted model), the growth rates were all small and some were negative. They concluded that stabilizing
forces in this system are very strong—much stronger than necessary to ensure coexistence.

Many additional studies have examined the outcome of pairwise competition, based on the Lotka—
Volterra formalism mentioned at the end of Section 2.7 (Eq. 54). These studies produce results that are
not directly comparable to the ones above, and have the drawback that they can only examine pairwise
coexistence (Barabas et al. 2016, Saavedra et al. 2017). But they can show whether pairs of species
coexist, and if so, how strongly their coexistence is stabilized.

Godoy et al. (2014) and Kraft et al. (2015) used the Lotka—Volterra methods to study whether
annual plants can coexist in California serpentine soils. Their results suggested that most pairs of
species should be unable to coexist. This seems extreme, but may be explained in part by their
methodology. First, these studies estimated competitive effects at a single time and place; thus, they
could accurately capture variation-independent mechanisms, but not mechanisms that rely on spatial or
temporal variation in the environment (Kraft et al. 2015). In other words, only contributions to Ap;
were measured, but not to AN;, Al;, or Ak;. Second, they were based on pairwise comparisons instead of
studying the community as a whole, since the Lotka—Volterra methods only allow for those. Saavedra
et al. (2017) later showed that analyzing the entire community substantially altered the conclusions.
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The Lotka—Volterra methods were also used to study phytoplankton competing in a chemostat.
Narwani et al. (2013) found that species were competitively very similar with f;/ fi < 1.3 for all but
one outlier, but also that stability was weak, with the niche overlap index 1 — A between 0.65 and 1.1.
They found that about half the species should coexist, though this conclusion is again based on pairwise
comparisons which may or may not be indicative of coexistence in the community as a whole. Their
findings do suggest that these phytoplankton may be ecologically similar—though that could also be
because the chemostat environment leaves little room for ecological differentiation (Chu and Adler
2015).

Finally, the Lotka—Volterra methods were used to study coexistence between long-lived plants in
five grassland systems in western North America (Chu and Adler 2015). They used mapping data to
track individuals over a period of 13 to 40 years, in between 26 and 178 quadrats. These systems were
overstabilized, with an average competitive advantage ratio of 1.5 and an average niche overlap index
of 0.29 (with this value of 1 — A, communities could coexist with an advantage ratio of up to 4.76). The
authors argue that these communities were so strongly stabilized because they examined a large range
of spatial and temporal conditions, and because the study focused on only the most dominant plants.

4.4 Testing particular hypotheses

The quantification techniques of Chesson’s coexistence theory can also be applied to test specific
hypotheses. For example, Godoy et al. (2014) recently tested whether unrelated species were more
likely to coexist than related species. They found that in their system of California annual plants, this
was not the case; rather, related species were more likely to coexist because they were competitively
similar. In the same system, Kraft et al. (2015) tested the hypothesis that trait differences promote
coexistence. They found that no single trait contributed to stabilization, but that most single traits
produced competitive advantages. Complex combinations of traits were able to produce stabilization;
however, the authors point out that most studies of trait-based coexistence are based on single trait axes.
Again, these results are limited by the fact that they measured competition in a single time and place.
For instance, it has been shown in the Sonoran Desert that a high specific leaf area is helpful in wet
years but not dry years (Angert et al. 2009), so differences in specific leaf area may lead to a temporal
storage effect which would have remained undetected by Kraft et al. (2015).

Also, Usinowicz et al. (2017) used their data to test the hypothesis that the tropics are more
species-rich because stabilizing mechanisms are stronger there. They measured the storage effect in 10
forests across 65 degrees of latitude, and found that the storage effect was one and a half times as strong
in tropical forests as it was in boreal forests. Their results were measured using pairwise comparisons
however, and as usual, one should be circumspect when generalizing the results of pairwise tests to
entire communities (Barabas et al. 2016, Saavedra et al. 2017, Levine et al. 2017).

4.5 Automating model analysis

Finally, tools are currently being developed to automate model analyses. Such tools are designed so that
someone with an empirically parameterized model can quantify storage effects, relative nonlinearities,
and other mechanisms in their system. These tools will be most useful for complex models, such
as those with age structure, which cannot be analyzed simply (but see Dewi and Chesson 2003).
They will not reveal how particular mechanisms work, but will be of great value in empirical tests of
each mechanism. Currently, one such model exists for quantifying models with temporal variation



Chesson’s coexistence theory Ecological Monographs (2018) 88:277-303 Page 27

(Ellner et al. 2016). Additionally, an improved model for temporal dynamics (S. Ellner, personal
communication) is near production.

5 Challenges and limitations

Despite its high level of generality and variety of applications, Chesson’s theory has its drawbacks.
Many of the limitations arise from the fact that the theory is founded on invasion analysis. A major
advantage of invasion analysis is its treatment of spatiotemporally variable environments: instead
of having to evaluate a stochastic stationary state and its stability, one simply looks at whether the
long-term average growth rate of a species is positive when at low abundance. However, invasion
analysis does have some limitations. First, we show that invasion analysis sometimes fails to predict
if species coexist or are excluded. Next, we discuss a separate issue with the scaling factors d; when
species respond to groups of limiting factors in similar ways. Finally, we argue that much of Chesson’s
theory is based on the assumption of a single limiting factor, and show how relaxing this assumption
can create problems.

5.1 Complex dynamics

One limitation of invasion analysis is that it may be uninformative or downright misleading in the
presence of complex dynamics with alternative stable states. Counterexamples to the standard picture
“species coexist when they can all invade” are possible both ways: species may be able to invade but
still go extinct; and conversely, species may be unable to invade but still coexist.
An example of the former scenario is provided by a model of asymmetric Lotka—Volterra competi-
tion between a resident and a very similar mutant species, with an added Allee effect:
n . ,
rj:gjm—m—nj—ajknk (j=1,2; k#j), (55)

where the n; are population densities, 7 = nj + ny is their sum, g; are maximum rates of intrinsic
growth, m is a baseline mortality rate, and «j is the competition coefficient of species k on j. Generally,
species 1 has a monoculture equilibrium that is stable in the absence of species 2. When the mutant
species 2 is introduced at a low density, it can initially grow and knock off species 1 from its attractor,
driving it towards extinction. Under some circumstances however, species 2 cannot persist without 1,
and therefore goes extinct as well (“evolutionary suicide”, Gyllenberg and Parvinen 2001). So even
though species 2 can invade, it still goes extinct after the invasion phase (Figure 1a). This example
involves the coextinction of the species, but this is not a necessary outcome: in other models, following
a successful invasion, the invader eventually goes extinct while the resident does not (“the resident
strikes back”, Geritz et al. 2002).

As an example of the second scenario, consider the case of two competitors both exhibiting an
Allee effect. As a result, neither of them can grow from low density. Once over a threshold density,
however, they can establish themselves and coexist. This model can be thought of as adding Allee
effects to standard two-species Lotka—Volterra competition:

K;

”j:gj<A].—1) <1—])—O¢jknk (]:1,2; k#]), (56)
J
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Figure 1: Phase planes of hypothetical two-species communities, with the axes representing the densities of
species 1 and 2. Stable vs. unstable equilibria are marked by solid blue vs. open red circles. The arrows point
in the direction of the local dynamical flow. The shade of the arrows represents the speed of the local flow,
with darker hues corresponding to faster flows. a. A community of two very similar species, corresponding to
Eq. 55, with parameters g; = 1.833, go = 1.821, m = 0.125, ;o = 1.01, and a1 = 0.99. Species 2 can invade
the monoculture equilibrium n} = 0.375 of species 1 (which is stable as long as species 2 is absent), but is unable
to persist. The yellow curve shows the dynamical trajectory of the invasion process, with species 1 starting from
its equilibrium and species 2 from a small invasion density of 0.001. b. Two-species community corresponding
to Eq. 56, with parameters g1 = g2 =2,A; =A> =1/2, K| = K> =2, and o = az; = 1/5. None of the five
boundary equilibria allow invasion from low density. Despite this, coexistence is possible: there is a coexistence
equilibrium with a basin of attraction (shaded area) which is substantially large, even though it does not extend to
the boundaries.

where the A ; are Allee thresholds (such that in monoculture, the density n; dropping below A ; means
the extinction of species j), and the K; are maximum monoculture equilibrium abundances (“carrying
capacities”). Both species now have negative invasion growth rates, yet can coexist if they start at high
density (Figure 1b).

5.2 Stability and feasibility of the resident community

Invasion analysis proceeds by checking whether each of the S species would be able to invade the
(S — 1)-species community of residents, assumed to be at some stationary state. If the (S — 1)-species
stationary state does not exist for all species as invaders, then invasion analysis fails. The problem is
related to the previous one of complex dynamics and alternative stable states. However, here the source
of the problem is the nonexistence of the resident community, which can happen even if the system’s
dynamical behavior is otherwise simple.

First, it is possible that a change in the resident community will lead to negative invasion growth
rates, even though species can coexist. As an example, let us consider the Lotka—Volterra model
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(Eq. 53) with three species and parameter values

0.55 1 1.1 12
bi=|061], ap=[08 1 15]. (57)
0.42 07 07 1

It is easy to verify that there is a stable coexistence equilibrium: (n} = 0.05, n5 = 0.15, nj = 0.28).
However, it turns out that species 1 cannot invade from the stationary state corresponding to its absence.
This is because species 2 and 3 cannot coexist alone, and species 1 cannot invade a monoculture of
species 2. To show this, let species 1 be the invader. The subcommunity corresponding to its absence

has parameters
0.61 1 15 —

which leads to the unstable equilibrium n5 = 0.2, n5 = 0.28 and thus founder effects: the winner is
determined by the initial conditions. Assuming initial conditions are such that species 2 wins, the final
stable equilibrium is species 2 having a monoculture equilibrium density b, /a;; = 0.61. Species 1, the
invader, cannot invade this monoculture: the subsystem

0.55 111 .
b,-_(o‘&)? ajk—(o_g 1> (jok=1,2) (59)

solidly predicts species 2 winning. Invasion analysis thus incorrectly predicts that coexistence in this
system is impossible. In fact, species 1 ironically has no problem growing from an arbitrarily low
abundance and coexisting with the other two, for quite a wide range of initial abundances n,(0) and
n3(0), as long as n3(0) is not precisely zero.

It is also possible that species have positive invasion growth rates, but will not coexist due to
changes in the resident community. A well-known example of this is intransitive competition (rock-
paper-scissors dynamics; May and Leonard 1975, Allesina and Levine 2011). If the rock-species is
brought into the invader state, the paper-species cannot coexist with the scissors-species: only the
scissors-species remains. As a result, the rock-species can invade this monoculture. And yet, there
is no guarantee that the three species together will coexist: the community may exhibit ever larger
oscillations that drive each species closer and closer to extinction (May and Leonard 1975).

As seen, a blind application of invasion criteria without regards to whether all (S — 1)-species
communities are stable and feasible may quickly lead to nonsensical results. The problem of evaluating
the (S — 1)-species resident community gets especially difficult if the number of species is large. For
example, a 99-species community is arguably just as intractable as a 100-species one. But if the
(S — 1)-species community is no easier to handle than § species, then nothing is gained by invasion
analysis—in fact, for § = 100, analyzing the one hundred different 99-species resident communities is
approximately 100 times more inconvenient than simply analyzing the full 100-species model in the
first place. Furthermore, in species-rich systems the relegation of one species into the invader state
is often followed by coextinctions (Case 1990). That is, the (S — 1)-species resident stationary states
usually do not exist. Then invasion criteria can no longer be used to assess coexistence in the first place.

Generally speaking, invasion criteria are most useful either when the number of species is very
small, or if the structure of interactions between them is especially simple. One such simple structure is
diffuse competition, where there is one common intra- and another common interspecific competition
coefficient (Chesson 1994, 2000a,b, 2003). The (S — 1)-species state is then simple to evaluate (Bastolla
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et al. 2005), and the invasion criterion is easily applicable—at least in simple competition models such
as the annual plant or Lotka—Volterra models. Chesson’s works often make the assumption of diffuse
competition; indeed, this is the reason why multispecies invasion growth rate formulas (such as Eq. 4
in Chesson 2000b) were possible to derive. If such a simple interaction structure is lacking, evaluation
of multispecies stationary states becomes increasingly difficult, and quickly becomes unfeasible.

5.3 The conditioning of the scaling factors

If there are more species than limiting factors in the system, one can solve Eq. 21 for the scaling factors
d;, conveniently eliminating the linear terms in the limiting factors from the equations. Since there are
fewer equations than unknowns, the solution will not be unique. Even though this gives some freedom
in choosing the scaling factors, one must take d;” i £ 0, otherwise there is division by zero in Eq. 17. A
nonzero d; i however, simply cannot be achieved in certain cases. As an example, consider the model

L
k=1

with two limiting factors and three species, where @, is given by the matrix
11
=12 2. (61)
3 2

Substitution into Eq. 21 yields a system of two linear equations for three unknowns:

di+2dr+3dz =0, (62)
di+2dr+2d3 =0. (63)

The general solution is d; = (2, —1, 0) ¢, where ¢ is an arbitrary constant. As such, the only freedom in
choosing the factors differently depending on invader identity is in choosing a different c. Unfortunately,
regardless of its value, ds is necessarily zero. Therefore, for Eq. 61, the scaling factors cannot be used
to partition the invasion growth rate of species 3 via Eq. 19. The crux of the problem is that the first
and second rows of ¢, as two-dimensional vectors, lie along the exact same line, while the third does
not (Figure 2a). It is therefore impossible to obtain the third vector as a linear combination of the first
two (Appendix S1).
The same problem occurs in the following example with four species and three limiting factors:

2

Pjk = (64)

O N = =
O = =
—_ W N W

Solving Eq. 21 yields dj = (1, =3, 1, 0) ¢, so the invasion rate of species 4 cannot be partitioned via
Eq. 19. In this example the vectors formed by the first three rows are confined to a two-dimensional
plane in the three-dimensional space spanned by the limiting factors (Figure 2b). The fourth vector lies
outside this plane and so the corresponding scaling factor is zero. This example therefore suffers from
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Figure 2: a. Vectors formed by the rows of matrix ¢;; in Eq. 61, plotted on the x-y plane, where x and y are
respectively the coordinates of the points given by the two columns of ¢ . The first and second species have
colinear vectors, while the third is off the line. The third vector cannot be constructed as a linear combination
of the first two. b. Vectors formed by the rows of matrix ¢ in Eq. 64, plotted in the three-dimensional space
defined by orthogonal axes x' = 5x+2y+7z,y' = —3x+4y+z, and 7 = x+y — z, where x, y, z are analogously
defined as above. The first three species lie on the plane 7' = 0, whereas the fourth does not. The fourth vector
cannot be written as a linear combination of the first three.

the same problem as the first—but, unlike before, in this case there is no obvious way of telling so just
by looking at the matrix @i, because no two rows are exactly proportional to one another.

In general, whenever a subset of the species have an identical relationship between responses to
different limiting factors while other species have different ones, at least one of the scaling factors will
necessarily be zero. Mathematically, this situation translates as a subset of the vectors defined by the
¢ i living in a lower-dimensional subspace relative to the entire L-dimensional space determined by the
L limiting factors (colinear vectors in the 2-dimensional example in Eq. 61; coplanar vectors in the
3-dimensional example in Eq. 64).

All such cases have the property that an arbitrarily small perturbation of the entries of ¢;; will in
general resolve the degeneracy, and lead to a case where all scaling factors are nonzero. Geometrically,
this is because the rows need to be precisely linearly dependent to lead to zero scaling factors. For
instance, taking the first example in Eq. 61: if we replace ¢ by 1.001, the scaling factors become
dj = (—2000, 998, 2) ¢, with none of them being zero anymore. While this seems to suggest that the
problem of zero scaling factors is merely of academic interest, it actually reveals a potential empirical
problem. The ¢;. are often empirically measured quantities, and as such, come with inevitable
measurement error. When a subset of the rows of the matrix are nearly linearly dependent, small errors
of measurement will translate into large differences in the d;. For example, an uptake rate of 1 will
often be indistinguishable from an uptake rate of 1.001; however, changing the entry in a ¢;; matrix
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from 1 to 1.001 can vastly change the d;:

1.001 1 —2000 1 1.001 2000
ou=1 2 2| =>d=| 98 |c, op=[2 2 | =d=[-1003]c (65
32 2 32 2

where c is an arbitrary constant. The different d; values lead to wildly different calculations for the
invasion growth rates. For instance, applying Eq. 17 to the model in Eq. 60 which has three species and
two limiting factors, Eq. 39 yields the partitioned invasion growth rates. Calculating the third invasion
rate for both scenarios in Eq. 65 and assuming m; = 1 for all three species, we find that 73 = 500 in the
first scenario and 73 = —499.5 in the second (empirically indistinguishable) one. That is, a tiny error in
measurement translates into a huge difference of calculated invasion growth rates.

It is important to appreciate that the problem is not with any deficiency in measurement techniques
or numerical methods. Rather, it is the model itself which is ill-conditioned, and therefore no method
could ever resolve it (short of measurements of infinite precision). The problem is intrinsic to the
formalism, and one must be aware of it when analyzing particular models.

5.4 The number of limiting factors

The scaling factors d; were introduced to cancel the linear terms in the limiting factors F;. However, the
maximum number of limiting factors that can be canceled is § — 1. This result immediately connects to
classical coexistence theory: if there are more species than limiting factors, it is impossible for them
to coexist at a stable equilibrium point. Stable equilibrium, in this context, means no spatiotemporal
fluctuations. Therefore all coexistence mechanisms in Egs. 20 and 47 that depend on such fluctuations
(AN;, Al;, and Ak;) will be zero. But if there are more species than limiting factors, then the Ap; term
will also be zero with an appropriate choice of the d;. So the only term left will be 7/, and since some
of these are necessarily negative, coexistence is precluded. This is nothing else but the principle of
competitive exclusion in its classical form (Levin 1970). The scaling factors therefore offer more
than mathematical convenience: by forcing Ap; to be zero, they make it explicit that coexistence
is impossible in the absence of either as many limiting factors as species, or fluctuation-dependent
mechanisms contributing to AN;, Al;, or AK;.

That said, a number of problems arise in systems with as many or more limiting factors than
species. In that case, not all linear terms in F; can be canceled, and Ap; will no longer be zero.
Unfortunately, to be able to actually evaluate Ap;, one would have to know the equilibrium levels of
the Fj, which cannot be obtained without additional equations governing the dynamics of the limiting
factors. Even if these equations are available, solving the joint system may be difficult.

In some situations, the number of limiting factors is much larger than the number of species. In
this case, it is unclear how one should choose the scaling factors d; to lead to the simplest possible
community description. In the special case where there is only one “major” limiting factor, Fj, and
the effect of all the others is much weaker, one can choose d; = 1/¢;; and d;x; = —1/(¢s1(S—1)) as
in Eq. 22 (effectively proceeding as if this was the only limiting factor) which will be correct to a
linear approximation—for technical details, see Kuang and Chesson (2010) and Stump and Chesson
(2017). In other cases, there are formally an infinite number of resources, and none of them stand out
as being overwhelmingly more important than any other. The classical example is species of different
phenotypes partitioning a resource continuum—e.g., birds with different bill depths feeding on seeds of
various sizes. When such an ecological situation is well-described by MacArthur’s consumer-resource
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model (MacArthur 1970, Chesson 1990), it can be cast in the Lotka—Volterra form of Eq. 53. For
this case, Chesson (2011) suggests choosing d; = 1/ /@jj- This choice, however, does not simplify
invasion analysis in any way.

Additionally, there is an important caveat to the usual interpretation of the Ap;, AN;, Al;, and Ak;
terms given in Section 3. Namely, these are generally only available when the number of limiting
factors is one. In that case, each of these four terms can be chosen to be the difference between resident
and average invader values (Eq. 23), which is the basis for all standard interpretations found in the
literature. For more than one limiting factor however, this kind of partitioning may not be available,
and with it the attending advantages in interpretation are lost as well. For example, in a system where
dj=(1,—1,1) and y; = 1, the storage effect for species 1 would be

Al = cov(&1,%61) —cov(&r,6r) +cov (83, 63), (66)

i.e., cov(&3,%>) harms but cov(&3,%3) helps the invader. In some cases these strange-looking weight-
ings may be ecologically meaningful. For example, Stump and Klausmeier (2016) considered relative
nonlinearity in a community where microbes exchanged resources, and found that the weighting terms
were negative for species that competed for resources, but positive where species exchanged resources.
However, even when such interpretations exist, they will often be slightly different from the usual one
(Section 3). One way around this problem is to formally treat models as having only one limiting
factor by choosing the d; to eliminate one single Fj, absorbing the rest into the Ap; term. With this
modification, Eqs. 22 and 23 still hold, and the interpretations below also hold for any number of
limiting factors—at the cost of the arbitrariness of which limiting factor was treated as the “baseline”.

We conclude that Chesson’s coexistence theory is most powerful when there is only a single
limiting factor. In that case, there is a simple recipe for choosing the scaling factors (Eq. 22) leading to
a partitioning of the invasion rates via Eq. 23 which has the simple interpretation of comparing invader
quantities with average resident ones. Furthermore, Ap; is eliminated, so coexistence is maintained
purely by fluctuation-dependent mechanisms. When the number of limiting factors is greater than one
but smaller than the number of species, Ap; can still be eliminated but Eq. 23 and the interpretational
advantages it comes with are no longer available. Finally, when the number of limiting factors is equal
to or larger than the number of species, it is unclear how one should designate the scaling factors d; to
simplify the problem as much as possible. Finding strategies for doing so is avenue for future research.

6 The stabilization-competitive advantage paradigm: strengths and
weaknesses

In addition to technical problems that are built into the mathematics of the framework, there are also
issues with how these formal aspects have been interpreted. In particular, the concepts of stabilization
A and competitive advantages f; (Egs. 48 and 52) may now have the dubious achievement of being
even more universally confused than the concept of the “niche” was reputed to have been (Real and
Levin 1991). As we argue below, these concepts are frequently invoked in discussions of coexistence
without sufficient regard to their formal meaning. We first tackle the apparent limitation that A and f;
are only defined for a single limiting factor, and argue that this limitation is inherent to biology, not
to the theory itself. Next, we discuss how the notion that these two terms are independent can lead to
pitfalls and incorrect conclusions. We finish by discussing what A and f; really are, and how they can
be useful: as summary statistics of the scaled invasion growth rates.
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6.1 Which limiting factor should be considered the baseline for evaluating stabiliza-
tion and competitive advantages?

The definitions for stabilization and competitive advantages hold when there is a single limiting factor.
They will also hold for an arbitrary number of limiting factors as long as all but one of them are
amalgamated into the Ap; term of Eqs. 20 and 47. This brings up the question of which limiting factor,
out of all possible ones, should be treated as the baseline—i.e., which one should be eliminated via a
proper choice of the scaling factors d; and thus excluded from Ap;. Appendix S6 presents a particular
example with two consumer species competing for two resources, with the first species specializing
on resource 1 and the second species on resource 2. In this case, if we pick resource 1 as the baseline,
we find that species 1 has a positive advantage and species 2 a negative one, which the stabilization
term overcomes to allow for coexistence. In turn, picking resource 2 as the baseline means species
2 has the positive advantage, with stabilization preventing species 1 from being excluded. Does this
introduce a fatal arbitrariness to the concepts of stabilization and competitive advantages? If not, which
interpretation is the correct one?

Both interpretations are correct, and it does not matter which limiting factor (or linear combination
thereof) one treats as the baseline. When choosing resource 1 as the baseline, our thought process is
as follows: were we to eliminate the influence of resource 2, we would find that species 1 excludes
species 2. This fact is expressed by species 1 having a positive advantage fi, and species 2 a negative
f> = —f1. However, resource 2 creates an A > 0 that boosts f, to make the invasion rate of species 2
positive and coexistence possible. Choosing resource 2 as the baseline, the same interpretation holds
with the species’ roles reversed. The bottom line is that when two species coexist, they are equally
fit from an evolutionary point of view, both having average long-term growth rates of zero. Judging
which species is competitively superior only makes sense when coexistence is not possible, which
requires the absence of all stabilizing mechanisms. Since in the presence of multiple resources there is
no unique way of eliminating just one of them, it is meaningless to ask which resource is providing the
stabilization—it is either and both. The ambiguity in the definitions of stabilization and competitive
advantages stemming from the arbitrary choice of a baseline factor is therefore not a defect in the
theory. Rather, it expresses a fundamental fact about what coexistence means.

This issue may seem to arise only when there are multiple limiting factors. In fact, the same
ambiguity is present even when there is only one factor, though this fact is veiled by a thick layer of
mathematical formalism. As an illuminating example, consider the following simple model of two
species consuming a single resource: r| = b1F —m; and ry, = by (F — F)z —my, where b; and m; are
the consumption and mortality rates, and F is the resource which is fluctuating in time with mean
F. The time averages then read 7| = b|F —m; and 7, = b,V — my, where V is the variance of the
resource. Quite literally, species 1 consumes the mean and species 2 the variance of the resource
(Levins 1979, Kisdi and Meszéna 1993, Szildgyi and Meszéna 2010); formally, F| = Fand F, =V
act as two separate limiting factors. As such, we have a choice to make: which one should we treat
as the baseline? Chesson’s formalism gives a fixed if arbitrary answer to this question: it is always F
which is the baseline and V' (or any other fluctuation-dependent quantity whose value would be zero in
the absence of environmental variability) is the mechanism. The reason for this lies in the intellectual
origins of what Chesson’s theory was designed to illuminate: the role of fluctuations in maintaining
coexistence. The baseline scenario is therefore always the one without fluctuations, in which case only
the Ap; terms can maintain coexistence in Eqgs. 20 and 47. Since, as mentioned before, this term is
zero in most of Chesson’s works due to there being only a single limiting factor, there is no longer any
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ambiguity in defining A and f; as long as we accept the rule that fluctuation-dependent limiting factors
can never be the baseline. Nevertheless, we note that it is in principle possible to evaluate A and f; on
one of the effective, fluctuation-induced limiting factors such as the variance of a resource, even if this
has never actually been done before.

In summary, while the ambiguity in the definitions of the stabilization and competitive advantage
terms is real, this is not a failure of the theory but a biologically important necessity whenever species
are actually coexisting as opposed to just having the survival of the best competitor.

6.2 Stabilization and competitive advantages are not independent

The decomposition of invasion growth rates into stabilization and competitive advantages appears to
simplify the analysis of coexistence: we determine A and the f;’s, and figure out which is bigger. A
simple but useful classification system suggests itself (Adler et al. 2007, Mayfield and Levine 2010),
whereby a community is robust (small f;, large A), dynamic (large f;, large A), unstable (large f;,
small A), or quasi-neutral (small f;, small A). The nature of the particular scenario could then inform
management decisions by assessing whether the system is under threat of extinctions.

Alas, A and f; are not independent quantities. Rather, any model parameter—e.g., the rate of
resource uptake—will generally affect both terms simultaneously. In fact, the very definitions of A and
fi (the mean scaled invasion rate and the ith scaled rate minus this mean; Eqs. 48 and 52) reveal that
this must be so. That A and f; are interconnected has been pointed out in the literature before (Loreau
et al. 2012, Adler et al. 2013, Letten et al. 2017). Despite this, both terms are commonly displayed
and discussed in a way that suggests that they can vary independently. For example, many works
display them as orthogonal axes of variation (Adler et al. 2007, Chesson and Kuang 2008, Narwani
et al. 2013, Kraft et al. 2015), and some (e.g., Mayfield and Levine 2010) explicitly talk about scenarios
where some trait influences either just one or the other term. Thinking of stabilization and competitive
advantages as independent quantities may lead to overreaching conclusions about coexistence. Below
we discuss some examples drawn from the literature or personal communications.

1. The quantity A measures how stabilized the community is. The statement is tautologically
true, since in Chesson’s theory stabilization is by definition the mean scaled invasion growth rate.
However, this does not necessarily say much about coexistence, because the average of the 7;/¢; can
be arbitrarily large without the species actually coexisting. Thus, A alone is insufficient to judge
coexistence: the f; are also needed. This is more obvious when we think in terms of the invasion
rates. In a two-species community, 71 /¢ =72 /¢, = 10 leads to A = 10, and so does 7, /¢ = 21 and
72/ ¢ = —1; but the species coexist only in the first case. Similarly, a system with a high A and large
differences in competitive advantages may in many ways be less stable than a community with a lower
A and no advantage differences (Yenni et al. 2012).

2. A species’ competitive advantage is a fundamental property of that organism. We have
often heard people speak of “the” competitive advantage of an organism, much like they speak of
its R*-value: that it is a fundamental trait of an organism which could be measured outside of its
competitive context. This sometimes holds under very stringent assumptions, such as those that would
make the advantage terms equal to an R*-comparison, like in the example of Section 2.5 (see also
Stump and Klausmeier 2016). However, it will not be true generally. An organism’s competitive
advantage is no more a fundamental property than its invasion growth rate. Thus, any factor that
changes an organism’s growth rate—a change in abiotic conditions, or a different set of competitors,
or the introduction of a predator—will change its f; value. Indeed, this becomes obvious when one
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considers a rock-paper-scissors community: a rock-species will have positive f;ocx if competing against
scissors, and negative fiock if competing against paper, even though fpaper 1S negative in a community
with scissors and paper. There is no way to rank the competitive hierarchy of these species without
knowing who the other competitors are.

3. Stabilization measures the volume of parameter space compatible with coexistence (Ches-
son 2008, Yuan and Chesson 2015). This claim is based on the coexistence condition min(f;) +A > 0.
Quoting from Yuan and Chesson (2015): “Hence if the f; can be varied independently of A then we
see that A determines the size of the coexistence region in terms of the [competitive advantages], f;. A
larger value of A gives a larger region of f; values permitting coexistence.” This is technically true—if
certain model parameters affect only the f; but not A, then for those parameters, a larger A means that
a wider range of those parameters will be compatible with coexistence. As seen from Eq. 51, any
quantity influencing only the r; term of Eqs. 20 and 47 will have this property. For instance, Yuan and
Chesson (2015) present an example of a two-species lottery model where fecundity affects only the f;.
However, as they themselves point out, this property holds only for this parameter in this particular
model, and even there it is lost for three or more species. As discussed earlier, the problem is that
model parameters generally affect both A and f;, making the premise of the argument invalid. While
parameters influencing only the f; are not inconceivable, they constitute a special case. Using A to
measure the size of parameter space allowing coexistence is therefore of limited applicability.

4. Very similar species may stably coexist, because similar species must also have similar
competitive advantages, and therefore require a very small amount of stabilization to overcome
their inequalities (Adler et al. 2007). This argument seems true on the surface if one thinks of A and
/i as independently adjustable, but runs into trouble when one thinks in terms of model parameters
potentially affecting both. While parameters which influence the f; without changing A are at least
conceivable, it is much more difficult to have a parameter affecting A but leaving all the f; intact, as
this would require the parameter to simultaneously influence all scaled invasion rates by the exact same
amount (thus changing their mean without affecting any of the differences from that mean). In fact,
classical ecological arguments and adaptive dynamics both demonstrate that the stable coexistence of
similar species is highly unlikely (Geritz et al. 1998, Meszéna 2005, Gyllenberg and Meszéna 2005,
Meszéna et al. 2006, Barabas et al. 2013a,b, 2014).

To show where the disconnect arises, we recast a classical problem of limiting similarity in terms
of A and f; (Appendix S7). We consider a general scenario where two very similar species compete.
These species are identical except for a small difference d in a single quantitative trait. We show that if
the strength of competition decreases with increasing trait difference, then the competitive advantages
are proportional to &, which means they indeed approach zero with decreasing trait differences.
Unfortunately however, stabilization turns out to be proportional to §2, which, for sufficiently small
0, decreases faster than the competitive advantages. Therefore, stabilization cannot overcome the
competitive disadvantage of the losing species even though both approach zero with decreasing trait
differences.

Just as before, the tacit assumption that A and f; are independent misleads us into thinking
that arbitrarily similar species may stably coexist. Once we account for their dependence on model
parameters, A and f; give the same result as classical arguments.

5. Stabilization stems from “any [species] differences that cause species to more strongly
limit themselves than others”. The above is a quote from HilleRisLambers et al. (2012), but see also
Chesson (2000b), Adler et al. (2007), Levine and HilleRisLambers (2009), Mayfield and Levine (2010),
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Adler et al. (2010), Chesson (2011), Narwani et al. (2013), Kraft et al. (2015), and others. The claim
is based on the Lotka—Volterra definition of stabilization (Section 2.7), and is valid in systems with
two species. When there are more than two species, however, it is no longer the case that species can
coexist if every direct interspecific interaction is weaker than every direct intraspecific interaction (i.e.,
ifajj > aj for all j and k).

First, coexistence via intransitive competitive loops or certain types of complex dynamics makes
it possible for species to coexist even if intraspecific effects are weaker than interspecific ones (Barabds
et al. 2016, Saavedra et al. 2017, Levine et al. 2017; Sections 5.1 and 5.2). But even in the realm
of standard symmetric competition where such complications are absent, it is simply not true that A
strictly increases with a decreasing ratio of inter- to intraspecific competition. We illustrate this using an
example in Appendix S8. We consider three species evenly spaced along a trait axis, with trait difference
0 between adjacent species, and competition strictly decreasing with increasing trait difference. We
set the intrinsic growth rates so that there are no competitive advantages: f; = f» = f3 = 0. Because
there are no advantages, and intraspecific competition is greater than interspecific competition for
every species, one might think species should be guaranteed to coexist. However, this is not the case;
rather, every species has a negative invasion growth rate (Figure 3), precluding coexistence. This occurs
because the middle species can outcompete either of the other two by itself (and thus keep both invaders
out), but cannot invade a community where species 1 and 3 are already established, due to too much
competition from each. As a result, these simple competitive interactions can create a priority effect,
leading to a negative A, over some range of trait differences (Figure 3).

The claim that reducing the ratio of inter- to intraspecific competition acts to increase A is based
on an intuitively appealing but ultimately invalid generalization of a two-species result to the case of
arbitrarily many species. Simply, in a multispecies community, any direct competitive effects are part of
a larger web of interactions. As such, indirect effects can lead to a non-monotonic relationship between
interspecific competition and A. Thus, the claim that species coexist when intraspecific competition is
stronger than interspecific competition is only true when the entire web of interactions is taken into
account. When it is not, then factors reducing a j; relative to a;; may act to decrease A instead of
increasing it, hindering coexistence.

6.3 Stabilization and competitive advantages are summary statistics

In the end, stabilization and competitive advantages are no more and no less than what their definitions
say: the mean scaled invasion growth rate, and departures from this mean (Eqs. 48 and 52). They do not
possess any default biological meaning and, despite their evocative names, are not directly connected
to any particular biological process or mechanism. It is important not to fall foul of a reification
process—whereby the name given to a concept becomes the basis for its interpretation, instead of its
actual definition. The terms “stabilization” and “competitive advantages” (not to mention the original
“average fitness differences’”) might be so suggestive as to seem to lend meaning to A and f; beyond
what they actually measure. This can obscure the fact that A and the f; actually contain exactly as much
information as the invasion rates.

Stabilization and competitive advantages cannot be measured independently of the invasion rates:
the only way to evaluate them is by obtaining the 7;/¢; first and then applying Eqs. 48 and 52. The
epistemological status of A and f; is therefore very different from that of seemingly similar theoretical
concepts. Take the long-term geometric growth rate of a structured population as an example. The
growth rate is given by the dominant eigenvalue A; of the population projection matrix, which is a
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Figure 3: Species might not coexist even if intraspecific competition is stronger than interspecific competition
and there are no competitive advantages. Three species are evenly spaced along a one-dimensional trait axis,
such that there is a distance d between species pairs 1-2 and 2-3, and 20 between 1-3. They compete according
to a Lotka-Volterra model with competition coefficients determined by trait distance alone. a. The competition
coefficients a i, here given by exp(—&%), are a decreasing function of the trait distance between species. Intrinsic
growth rates are set such that there are no competitive advantages across species (Appendix S8). b. Stabilization
A as a function of the trait distance & between adjacent species. When all species are identical, A = 0, and
species coexist neutrally. However, a small increase in trait distance leads to a decrease instead of an increase
in A and competitive exclusion—despite the fact that interspecific competition is always reduced compared to
intraspecific competition by increasing 6. For coexistence, positive stabilization is needed, requiring substantial
trait differences.

function of the matrix entries. It is therefore a summary statistic (albeit a complicated nonlinear one)
of the vital rates. Nevertheless, A; is not merely this statistic: it can be measured independently by
taking the ratios of the observed number of individuals from one year to the next, at least as long as
the population is at its stable stage distribution. The same does not hold for A and f;. These are purely
abstract quantities which, once calculated, cannot be checked against independent evidence: it is not
the case that there is some known measurable property of an ecosystem, its “stabilization”, which we
have discovered to be also obtainable via the statistic A. The statement that “sufficient stabilization to
overcome all competitive disadvantages is the key to coexistence” would only express a deep truth if A
and f; would possess an existence independent of 7;/¢; = f; +A. Since they do not, the above statement
says no more and no less than that “the key to coexistence is that all invasion growth rates are positive”.

Stabilization and competitive advantages do, of course, have theoretical utility. When properly
applied, they may help gain intuition about coexistence that would otherwise not be easily available.
For example, in a recent study, Stump and Chesson (2017) split the impact of a competition-predation
tradeoff into its stabilizing and competitive advantage components. They showed that this tradeoff
mainly affects the f;, and therefore the winner of competition, rather than creating advantages to being
rare.

As summary statistics about invasion growth rates, stabilization and competitive advantages also
have obvious empirical value, similar to how a country’s gross domestic product and Gini coefficient
summarize the distribution of wealth in the population. They could thus be used to make comparisons
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across different communities, for instance by comparing their A values. We would argue, however,
that since A and the f; are summary statistics rather than fundamental properties, other summary
statistics may often be more useful for describing a system. For example, the classification scheme
mentioned at the beginning of Section 6.2 could categorize communities without loss of information
using the invasion rates themselves, as follows: robust (all 7; are large), dynamic (some 7; are large,
some are small), unstable (some 7; are negative), or quasi-neutral (all 7; are near zero). Similarly, for
conservation problems, knowing the invasion growth rate of the rarest species may be more important
than knowing the average across the community. Additionally, it may be more meaningful to ask how
some model parameter change is expected to alter the relationship between A and f;, and whether that
would promote coexistence or not.

7 Conclusions

Chesson’s coexistence theory has made many fundamental contributions to community ecology, perhaps
most importantly, clarifying how spatiotemporal fluctuations can work to maintain diversity. However,
it is not without its shortcomings. The theory applies supremely well when there is only a single
limiting factor, and quite well even for multiple factors, as long as their number is smaller than the
number of species. However, it does not offer any advantages, and may even work worse than other
methods, if there are as many or more limiting factors as species. More critically, it is unable to analyze
communities with complex dynamics. As such, it may not apply in species-rich communities unless
strong simplifying assumptions are made, such as diffuse competition. It is possible that some of these
limitations are not fundamental to the theory, and may be amended by future work. However, this can
only proceed if, instead of thinking that Chesson’s theory has “solved the problem of coexistence”, we
treat this body of work as a springboard for tackling the outstanding problems.

One of our goals with this review was to clearly show which parts of the theory can and cannot
(currently) hold weight. The dominant way of looking at coexistence in the 1960s and 1970s rested
on the foundation built to a large extent by Hutchinson, Levins, and MacArthur (Hutchinson 1957,
1959, 1978, MacArthur and Levins 1967, Levins 1968, MacArthur 1970). It subsequently underwent
a backlash, where many questioned whether the theory could live up to the high expectations at the
time, and some suggested that the whole approach was fundamentally flawed (Lewin 1983). However,
as Peter Chesson himself argued somewhat later, ... failings [of classical coexistence theory] have
more to do with overly ambitious expectations from distorted versions of the theory, than with any
fundamental error in the theory itself”” (Chesson 1990). The current expectations of Chesson’s theory
are very ambitious; for it to fulfill its potential and avoid undergoing a similar backlash in the future, it
is important that distorted versions of the theory are not used to support incorrect claims. Our hope is
that this review helps ecologists by making the theory more transparent and approachable, and sheds
light on how the theory should and should not be used.
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Appendix S1 Mathematical toolbox

Here we summarize the three basic mathematical tools Chesson’s coexistence theory heavily relies on,
in order of appearance when developing the theory in Section 2.

1. Second-order Taylor expansions of functions of multiple variables X;,X>,...,Xs (Otto and
Day 2007, pp. 100-106, 303-305). Given some fixed values X[, X;,..., X, a twice continuously
differentiable function f(X;,X>,...,Xs) can be expanded around these to second order with the formula

5.9
F(X1,X,...,Xs) zf(xf,xg,...,xg‘)juz a}];(X"_Xi*HQZZ .(X,-—Xl.*)(XJ-—X;‘),
i=1 YN '

(S1.1)
where the partial derivatives are evaluated at X; = X;". In general, the approximation is better the closer
the X; are to the X;*.

2. Nonlinear averaging, which revolves mostly around simple identities concerning the means of
products and covariances (Rice 2007, pp. 138-140). The two most important identities are that, for
variable quantities X and Y,

XY =XY +cov(X,Y), (S1.2)

cov(aX +¢,bY +d) = abcov(X,Y), (S1.3)

where the overbar denotes averaging, cov(X,Y) is the covariance between X and Y, and «, b, ¢, and d
are constants.

3. Linear combinations and linear dependence, used in determining the scaling factors when
summing resident and invader growth rates (Otto and Day 2007, pp. 228-230). Consider a set of
vectors vi,Va,. .., Vs. Let us assume that each vector has L components; v j is the kth component of the
jth vector. A linear combination of vectors is any sum av; +a;vy + - - - + asvs (compactly written
Z§:1 a;v;), where the a; are constant numbers. Linear dependence of a set of § vectors vi,va,...,Vg
revolves around the question of what values of the constants a; will lead to the linear combination of
the vectors being zero:

S
Y ajvi=o. (S1.4)
=

The set of vectors is linearly independent if the only way to uphold this equation is for all a; to be zero;
otherwise the set is linearly dependent. A linear combination with all a; = 0 is called trivial; therefore,
a set of vectors is linearly dependent if there exists a nontrivial linear combination satisfying Eq. S1.4.

The meaning of linear dependence is that some of the vectors from the set can be expressed using
the others (as a linear combination). In that sense, those vectors are superfluous because they could be
eliminated without losing the ability to use them. Indeed, assuming one of the constants a; is nonzero,
Eq. S1.4 can be rearranged:

S S
1
a;v; + E ajvj:0 = Vi=—— E ajvj, (S1.5)
J# 4 jZi

showing that v; is not actually necessary to keep in the original set of S vectors, since it can be expressed
via the others.

A simple but important result is that if there are more vectors than the number of components
in each vector (i.e., S > L), then the set vi,Vs,...,Vy is necessarily linearly dependent. Intuitively,
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this means that there are no more than two independent directions in a plane; no more than three in
physical space; and so on. For instance, any vector in a plane can be expressed as a linear combination
of vi = (1,0) and v, = (0, 1). Adding a third vector, say v3 = (2, —1), will make the set linearly
dependent, since v3 = 2v| — vp; or, equivalently, 2v; — v, — vz = 0.

To actually obtain the a; which satisfy Eq. S1.4, notice that this equation is a system of L linear
equations: written in components, 25: 1a;vjr =0, which is a separate equation for each k = 1,2,..., L.
Solving this system yields the a;. Note that for § > L, there are fewer equations than unknowns—which
means that the solution will not be unique.

Appendix S2 Quadratic expansion of a model with a single limiting fac-
tor

Consider a group of predator species preying on a resource with a type II functional response. The per
capita growth rates are
B CljF
T T "
where F is prey density, a; the attack rate, /; the handling time, and m; the mortality of predator j. We
assume that a;, hj, and m; are constant.

To perform a quadratic expansion of the model, we first designate the environmental and interaction
parameters. The choice is not unique, but one natural set of parameters is E; = —m; and C; =
a;F /(1+a;h;F). Here C; is a function of the single limiting factor . Designating E; = —m; (the
“average” of the constant E; = —m), it follows that, to achieve r; (E]*,C}*) = 0, we must have C}f =mj.

With the help of the environmental and interaction parameters, the per capita growth rates may
now be cast as r; = E; + C;. From this, we calculate the Taylor coefficients of Eq. 3:

(S2.1)

8r,~ (2) 821"/’ ar, (2) 82r,- 82rj
=08, = T o =0 Pi= o = B =56 =0 Y= g (52.2)
The standardized parameters, from Eqgs. 4 and 5, then evaluate to
1
& = o;(E;—E) + Eocf.z)(Ej —E5? =1 (—mj+m;)+0=0, (52.3)
e 2 a;F a;F
¢ =Bi(Ci—C))+=B,7(C;—C;)"=1 — —mj 0=—""———mj. S2.4
J ﬁ]( J j)+2ﬁj ( J j) X l—i-ajh]F m] + 1+a]th m] ( )

Since there is only a single limiting factor F', one can find its “equilibrial” value by solving Eq. 8 for
F*J. For a single factor, this equation reads C;(F*/) = C;, or

ajF*j
—— =m; S2.5
ItanFi (82.5)
whose solution is F*/ = (m;/a;)/(1 — hjm;).
We now use Eq. 10 to calculate the coefficients of the quadratic expansion:

] I d < ajF >
P OF |p_py  OF \14ahF

_ aj _ )
T U ahFae aj(1—hjm;),  (52.6)

F=F*J
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92¢; 52 ( a;F > —2ajh; p 3
V= —— = —m; = = —2a;h;j(1—hjm;)’.
P OF? gy OF2\1+aihiF V)| (L+ajhFri)3 7 7
(82.7)
Substituting these into Eq. 9, the full quadratic expansion reads
| 2
m; m;

Ci~aj(l—hmj)*| F— ———L— —(=2a2h;(1 —h;m)}) | F— ————— ] , (S2.8
R a( m;) ( aj(l—hjmj)) +2( ajh;( mj)’) a;(1— hym;) (52.3)

and since here we happen to have r; = ¢;, the same expansion holds for the model Eq. S2.1 as a whole.

Appendix S3 Relative nonlinearity: a simple example

One of the simplest examples of a model producing relative nonlinearity is when two species consume
a single limiting resource F' with nonlinear functional responses. The per capita growth rates are given
by
a jF .
L —m. =1.2 S3.1

rJ 1+thJF mJ (] ) ), ( )

where a; is the attack rate, /; the handling time, and m; the mortality of consumer ;.
The quadratic expansion of this model was already performed in Appendix S2 with the choices

Ej=-m;,Cj=a;F/(1+a;h;F),and E; = —C; = —m;. We got & = 0 and

1 .
€~ ¢j(F—F*J)+§I//j(F—F*/)2 (S3.2)
with F*/ = (mj/aj)/(l —hjmj), (Pj = aj(l —hjmj)2, and Y= —2a3hj(1 —hjmj)3. Writing the

long-term growth rate of species j assuming species i is invading, we now explicitly note the invader-
dependence of quantities using the superscript “—i”:

; - : 1 . .
7l g (F—Fr)+ EW,(F*! — F*J)2, (S3.3)
The scaling factors can be chosen using Eq. 22: d; = 1/¢; = (a;(1 — him;)>)~! and dy = —1/¢; =
—(as(1 —hgmy)?)~1. Using the notation Vi ! = (F~i — F*J)2, the sum of the scaled invader and resident
growth rates reads

— *I Wl i g *S ‘I/Y
= + | Fi—Fq Dy~ _poigpes_ _Toy-
& d(dr ar") = ‘P( 2¢; 29, )

ERYE AL X ntl] ﬂ 1_% — a.(1 — hm: )2 s — i
—¢1(F F ) ) <¢lv (PSV ) —az(l hlml) Cls(l*hsms) ai(lfhimi)
/ (83.4)
(1 — hams )2 .
+ a'(lzhlml)(Zashs( — hymy )V, = 2a;hi(1 — hem) V'),

AN;
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where the terms r} and AN; above have been identified using Eq. 19. Under the simplifying assumption

Vo= Vlf" (so we can drop the subscript and write V /), this becomes
7;" nig m; _i
= — 14 hy(1—nh —a;hi(1 —him;)).  (S3.5
(1[(1 — h,-m,-)z (as(l — hsms) a,-(l — h,m,-)) + (as s( sms) a; z( 1mz)) ( )

If V¥ did not depend on the identity of the invading species, then AN; would be positive for one species
but negative for the other, precluding coexistence. However, V " is a function of who is resident. Thus,
it is possible that AN; is greater for one species than the other. To see this, imagine an example where
V~! = 0. In this case, the requirement for coexistence via relative nonlinearity is simply that ri>0(.e.,
species 1 is the better equilibrium competitor), and that V=2 is sufficiently large to make AN, > 751,
allowing species 2 to overcome its equilibrium disadvantage by making use of fluctuations in F.

Appendix S4 The storage effect: a simple example
Let us consider here a very simple modification to Eq. 25:
r‘,‘:bJ-F—mj, (541)

where b; is the amount of growth species j gains from a unit resource, m; is species j’s mortality rate,
and F is a limiting resource. This model looks identical to Eq. 25 in Section 2.5, but we make the extra
assumption that, apart from F, the b; are also time-dependent. This turns out to make all the difference
in model outcome (Chesson and Huntly 1997, Fox 2013, Miller and Klausmeier 2017).

As usual, assigning environmental and interaction parameters can be done in various ways. Here
we pick Ej = b; and C; = F, and choose E; = b;. It then follows that C; = F*/ = m;/b;, since
ri(Ef,Cj) = bj(m;/bj) —m; = 0. The Taylor coefficients from Eq. 3 evaluate to

2.
9°r;j

oy _mj ) 9%r; _ o
IE;dC;

=1. (S4.2)

The per capita growth rates can now be written in the form of Eq. 2: r; = (m; /b;)(E; — E7) +b;(Cj—
C;)+(E;j — E7)(C; — C7}); moreover, this expression directly evaluates to b;F —m;, i.e., the quadratic
approximation of the model in this case is exact. The standardized parameters, from Eqs. 4 and 5,
are & = (mj/b;)(b;—b;) and €; = b;(F —m;/b;). The parameter y; = {;/(c;B;) evaluates to 1 /m;.
Writing the model in the standard form of Eq. 7, we have r; = & + €+ &% /mj, still evaluating to
b;F —m; exactly.

Taking the time average using Eq. 12:

Fj =&+ Cj+cov(&},6)) /mj=b;F —mj+cov((m;/b;)(bj—b;),bj(F —m;/b;)) /mj. (S4.3)
Simplifying the covariance term using Eq. S1.3, we get

Fj=b;F —mj+cov(b;,F). (S4.4)
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We can now sum the weighted resident and invader growth rates, choosing d; = 1/ bjand d; = —1 /ES:
_ 1, B — (= m 1 —  my 1
7i = —(difi+dsrs) = bi| F — =+ =cov(b;,F) — F + =— — =cov(by, F)
di bi bi s bs
— ; — (1 1
=b; (ms — m,) + b; <cov(b,~,F) — cov(bS,F)> . (54.5)
by b; b; bs
7 Al

This expression cannot be evaluated without knowing the covariance structure of the b; with F
when species i invades. Conceptually however, it still reveals a lot about when coexistence is promoted
by temporal fluctuations. One assumption that simplifies analysis is that F ' is some function of the
environmental parameter E; = b; of the resident; i.e., we have F~/ = F ”'(bs). (Since species i is in the
invader state, it cannot influence F', so species s is driving its fluctuations.) Then, Taylor expanding F
to linear order when species i is invading, we get

Fi ~ F* —ny(bs —By), (S4.6)

where 1y = —dF /db is evaluated at by = b;. It measures the force with which F is being driven by the
resident species s. The derivative dF /db, will typically be a negative function of by, since resources
will be more depleted when the resident is better able to take them up. Hence, our sign convention
makes 7 positive. Using Eq. S4.6, cov(b;,F) =~ cov(b;, F* — b, + nsbs) = —nscov(b;, by), where
we used Eq. S1.3 in the last step.

The problem is now determining the covariance structure of the b;’s. This could be measured
empirically, but here instead we use the simple working assumption that cov(b;,b,) = o2 when j=s
and 762 when j # s (e.g., Chesson 1994, Stump and Chesson 2015). Here 67 is the variance of the
b;’s, assumed to be the same for each species; and 7 is a common correlation coefficient, also assumed
to be the same between any nonidentical pair of species. With these assumptions, Eq. S4.5 simplifies to

—(m. m; — 1 1
Fi=bi| = — =) +b 362 = —=T]. S4.7
’ <b b,-> 1 <b b > (47

It is possible that the second term could harm one species. However, it could in fact be positive for
both when invading. This can be seen clearly in the special case 1; =1y, =1, b; = by, and T =0:

7i = (ms —m;) +n o2, (S4.8)

and so if 162 is larger than |m, —m,|, we have coexistence via the storage effect.

Appendix S5 The growth-density covariance: a simple example

We consider the simple linear resource consumption model of Section 2.5 with the twist that now there
are two habitat patches, and the same resource is independently available in both. Denoting the density
of species j in patch x by n;(x), their rate of change is governed by

dn;j(x)

—g = biF (xX)nj(x) —mn;(x) +D;(x,y)n;(y) — D;(y,x)n;(x). (S5.1)
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Here b; and m; are the patch- and time-independent resource uptake and mortality rates of species j,
F(x) is the available resource in patch x, and D;(x,y) is the rate of migration of species j from patch y
to patch x. From this equation, the effective per capita growth rates in patch x are obtained by dividing
the equation with n;(x) (Eq. 1):

1 dnj(x n;
ri(x) = ") éf ) njg; —Dj(y,x)>. (85.2)
The immigration and emigration terms have been parenthesized, since those cancel after spatial
averaging (Section 2.6).

The environmental and interaction parameters can be chosen analogously to Section 2.5: E;(x) =
—m; (with no actual spatial dependence since m; is assumed to be equal across the two patches),
and C;(x) = b;F (x). With these choices, r;(x) = E;(x) + Cj(x). We can choose E7 as the spatial
“average” of E;(x); here this is simply E} = —mj. It then follows that C; = m;, because this leads to
rj(E;,C;) = E +C; = 0. F*/ is determined from the condition C;(F*/) = C} (Eq. 8), resulting in
F*)=m;/b;. Since rj(x) = E;(x) + Cj(x), the Taylor coefficients from Eq. 3 will be

— b ) =y + (D)

2 _ 9T g = _1 = 91
TR T ack) T N T ack ()

=0,

S5.3
azrj ( )

%= IE a0,

all evaluated at £j(x) = E7 and C;(x) = C;. Using these and Egs. 4 and 5, the standardized environmen-
tal and interaction parameters are &(x) = 0 and €;(x) = b;F (x) —m;. Or, writing €;(x) in the form
of Eq. 9, €j(x) = ¢;(F(x) — F*/), where ¢; = b;. Eq. S5.2 may therefore be written as r;(x) = €;(x)
plus immigration minus emigration.

Applying Eq. 44 to this per capita growth rate, we can immediately write

ri(x) = €;(x) + cov(v;(x),r;(x))

:07

(S5.4)
= bjF (x) —mj+cov(v;(x),r;(x)),
where we have spatial averages and covariances, and
vi(x) = —3 () (S5.5)

1
3(n(x) +n;(y))

is the relative density of species j in patch x (Section 2.6). Putting species i in the invader state, we can

write

r(x) = biF(x) —m, +cov(vj—i(x), r;i(x>). (S5.6)
Applying Eq. 21 to find the scaling factors leads to the equation d;¢; + d;¢s; = 0, where we assume
species i is the invader and s is the resident. The choice d; = 1/¢; = 1/b;, d; = —1/¢; = —1/b; satisfies

this equation. We can now compare invader and resident growth rates using Eq. 17:

9= ) o (20 50

(85.7)

() by Leov(vi), n(x) — —cov(v(), (1) )
(5e-5) + (5 ; )

N

rlf AK;
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where we dropped the “—i”” superscripts for convenience. This is as far as one can go without specifying
the detailed dynamics of F(x), without which one cannot obtain n;(x) and r;(x) to explicitly evaluate
the covariance terms. But even without doing so, one can gain qualitative insight into what conditions
would lead to the Ak; term promoting coexistence.

If the species do not differentiate between the two habitat patches, then the resident will grow in
density as much as it can in each patch. This means that r;(x) will be zero for both patches x, and so
cov(Vy(x),rs(x)) = Vs(x)rg(x) — v5(x) rg(x) = 0. In turn, the invader also does not differentiate between
the patches; therefore, although its growth rate is not zero, it will grow equally well in both patches and
s0 cov(Vy(x), rs(x)) will again be zero. This leads to Ax; = 0 in Eq. S5.7 for both species as invaders, so
only the r] term remains. This will be positive for the species with the lower m/b; value and negative
for the other. Coexistence is therefore precluded. In essence, the above assumptions describe what
happens when the two patches are just an arbitrary subdivision of one single patch.

Now let us assume that species 1 prefers patch 1 and species 2 prefers patch 2, for instance because
of visual or olfactory cues which attract them to those locations. We assume that their choice has
no influence on their ecological performance though—in other words, only their migration rates are
affected but not any of the vital rates. With species s resident, its relative density will be high in patch
s # i. Due to its high abundance there however, its growth rate will be near zero. Conversely, in patch i
where its relative density is low, there will be a surplus of unused resources, making its growth rate
high. We thus expect cov(Vs(x),rs(x)) to be negative and therefore help the invader in Eq. S5.7. In
turn, cov(Vv;(x), r;(x)) will be positive: the invader’s individuals will concentrate in patch i (note that
in the covariance term it is the relative density that matters, which can be finite even if the invader’s
density is formally infinitesimally small), which is devoid of species s, resulting in a high local growth
rate. And it will be rare in patch s where its growth rate is low since the resident is using most of the
resources already. The effect of the two covariance terms is therefore to create a large positive Ak;. If
this term is larger than 7/ for the disadvantaged species, we will have coexistence via the growth-density
covariance.

Finally, note that in the above scenario we deliberately chose a trait unrelated to species per-
formance to generate coexistence. This is because the example was designed to demonstrate how
coexistence via pure growth-density covariance can arise. More interesting and/or realistic scenarios
would also generate growth-density covariances, for instance if the two patches differed in temperature,
and the two species were each adapted to tolerate one of the conditions better—however, this would
also introduce a patch-dependence in b;(x), which in turn leads to a spatial storage effect.

Appendix S6 Stabilization and competitive advantages with two limit-
ing factors

We start from a model of two consumer species competing for two limiting resources F; and F;:
ri=9¢pFi+¢pFa—m;  (j=1,2), (86.1)

where the ¢;; are consumption rates and m; the mortality of species j. Since there are two species
and two limiting factors, one cannot eliminate both of them via any choice of the scaling factors d.
However, we can eliminate one of the factors. Let that factor be Fj. Then, from Eq. 22, d; i— 1/¢;1 and
d; " = —1/¢s1, where s # i is the resident species. The long-term growth rates with species i invading
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are therefore =9 i F ) ]2F —m; (we assume no environmental fluctuations). We partition r;” i
using Eq. 17:

_l o i ¢12 _l ﬂ @ i
i g ) = "’”(qm ¢ﬂ> ¢ll< o o Ton on” > (56:2)

with Fl_i having canceled, as it should. Rearranging, we get

ri ms  m 02 02\ .

T (s M (P2 02 i $6.3
01 <¢s1 ¢i1> * <¢i1 ¢s1> 2 (56.3)
T Ap;

i

We can now calculate A from Eq. 48 and the f; from Eq. 52:

1<r1+r2> (‘1’12_¢22)(F _FY), (S6.4)

o 0 o1 2
r my  my 012 ¢22> BT
1= A=|——-——"— |+ ———|(F +F"°), (S6.5)
f o1 <¢21 ¢11) <¢11 021 (7 2)
and f, = — f} since the sum of the f; is always zero. To proceed, let us designate numerical values for

the parameters:

1 1 1/10 _j 1/2
0() el ) () e

(the last one means that resource F> is 1/2 when the first species is an invader, and 1 when the second).
The matrix ¢, implies species 1 is a specialist on resource 1 and species 2 on resource 2. Substituting
these numbers into the expressions for A and f;, we find A = 2.475 and f|; = —f, = 1.575. Since
ri/®i1 = fi+A is greater than zero for both species as invaders, we have coexistence. Without the
stabilization term A however, species 1 outcompetes species 2.

Suppose now that we do the exact same, but with treating F, as the baseline limiting factor instead.
An analogous calculation then yields

(Zil B ZZ) (= F75), (S6.7)
_(m2_m\ 1(ou  9n -
= <¢22 ‘7’12) T2 <¢12 ¢22> (F+ R ==f (56.8)

and after assigning Fl_1 =1, Fl_2 = 1/2, we now get f, = —f; = 1.575, with A = 2.475 and both
ri/¢i1 = fi +A positive. That is, now species 2 is the one outcompeting species 1 in the absence of the
stabilization term A.

The difference in interpretation simply reflects the change in perspective when altering which
limiting factor serves as the baseline. In the first scenario, resource 1 is the baseline, so stabilization is
provided by resource 2. This can be seen from the expression for A: Eq. S6.4 is proportional to the
difference of monoculture equilibrium levels of F; and does not depend on Fj at all. In the second
scenario, it is the other way round: resource 2 is the baseline and 1 provides stabilization, and species 2
is the better competitor for the baseline. Naturally, since the two descriptions refer to the one and same
coexistence scenario, the final results for the invasion growth rates must be identical, regardless of how
they are calculated.
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Appendix S7 “Small stabilization required’’ does not translate to ‘“small
trait difference required”

Consider two species which are identical to one another except in a single quantitative trait. We make
the following assumptions:

1. There is a long-term equilibrium state on which the system eventually settles.
2. Species only differ by a small amount 0 in the quantitative trait of interest.

3. All species interactions depend only on the difference & between traits, not on the individual trait
values themselves.

4. The strength of interaction between species is a decreasing function of trait difference: more
similar species interact more strongly. This decreasing function must be smooth to be biologically
realistic (Adler and Mosquera 2000, D’ Andrea et al. 2013, Barabds et al. 2013a), which we will
assume here.

Otherwise, the dynamics may depend on the traits and densities n; in an arbitrary way. Near the
assumed equilibrium densities n} and 3, the per capita growth rates may be linearized:

2 Jr;
ri(ni,m) = ri(ny,n)+ Y =
/ ’ L ._/7 k;l al’lk

(ng —ny). (S7.1)

nE=ny

Denoting the partial derivatives evaluated at the equilibrium by —a i, we have

2 2 2
ri(ni,n) =~ Zajan—Zajknk:bj—Zajknk, (87.2)
k=1 k=1 k=1
——
bj
recovering the two-species Lotka—Volterra model with effective intrinsic growth rates b; and interaction
coefficients a j.
By the 3rd assumption, a;; = az; and aj» = ap;. Without loss of generality (e.g., by rescaling
units), we can assume a;; = ap; = 1. By the 4th assumption, we then have a;p = a1 = a < 1. We
therefore write the model parameters as

b 1
j= (b;), aje= <a ?) (57.3)

With these parameters, when species i is invading, the equilibrium abundance of species s # i is simply
n;‘_i = b,. The invasion growth rate of species i is therefore r; = b; — atb;. The limiting factors in
this model may be chosen to be the population densities n; and n; themselves (Chesson 1994). To
decompose the scaled invasion growth rates as r;/¢; = f; + A, we first need to designate a baseline
limiting factor. Here we choose this to be n; (but due to the symmetry of the matrix a;;, the same
result would be obtained by choosing n,). The vector ¢; is now equal to a;; thatis, ¢; = 1 and ¢ = «.

Using the invasion rates r; = b; — atbs, we first evaluate the stabilization term A from Eq. 48:

1/ n r 1 r 1 bz—abl 1 1
2<¢1+%) Y+ 2) 2<b1 by 2 ) 2<a Ot>b2 (87.4)
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In turn, we obtain the competitive advantage terms f; from Eq. 52:

T 1/1 1/1
=——A=b—abb—-A=b—ab—=|——a |by=bj—=| —+a|b S7.5
h o 1 2 1 2 2(05 >2 1 2(a+ >2, (57.5)
and f, = —fi since the sum of the f; is always zero.

Because the species are very similar by hypothesis, we can approximate b, by Taylor expanding its
value around b; (as a function of the trait): by =~ b + pd, where p = db; /dd is a Taylor coefficient. The
same can be done with ¢, but there is a crucial difference: the interaction strengths have a maximum at
0 = 0 (by our 4th assumption). Therefore, the linear term in § in the Taylor expansion is zero, and
we must expand « to second order. The maximal strength of competition was scaled to 1, therefore
a ~ 1—q8?%, where ¢ = —9%0/d8? (the negative so that g > 0). Substituting these approximations
into Egs. S7.4 and S7.5, we get, to leading order,

_Ir o1 2 ~ 1 2_ 2
A_Z((x a>b2~2<1_q52 1+q5>(b1+p5)~2(1—|—q5 14¢87)(bi + pd)

= q8%(b1 + p8) = b1g8* + pqd® ~ b1¢>

(S7.6)

and

1/1 1 1
f1:—f2:b1—<+a>b2%b1—<+1—q62>(b1—|—p5)
2\« 2\ 1—¢é? (S7.7)

~ b1 5 (148 +1-48%) (b1 +p3) = by — (b1 + pd) = —pé.
Eq. S7.7 tells us that stabilization must exceed pd if both species are to have positive invasion growth
rates. Using Eq. S7.6, this imposes a lower limit on the trait difference, Smin ~ p/(b1¢). Notice that
this limit occurs despite the fact that competitive advantage differences also decrease as 0 decreases.
Unfortunately for coexistence, stabilization decreases faster, proportional to 82 rather than §. Therefore,
an arbitrarily low stabilization requirement does not translate into an arbitrarily low trait difference
requirement. We emphasize that this is not just a particular result from a particular model study: due to
the generality of our basic assumptions, this is the expected outcome under most ecological scenarios.

Naturally, if p = 0 (meaning by = b;, and hence f; = f> = 0 due to Eq. S7.7), then &y, = 0.
In words, when there are no competitive advantages, then any nonzero trait difference suffices for
coexistence. This is of course an exceptional case, as there is no reason for the effective intrinsic rates
to be precisely equal. But even this seemingly natural result breaks down when we add another species,
as our example in Appendix S8 shows.

Appendix S8 Substantial trait differences may be needed even with zero
competitive advantages

Consider a three-species community with the assumptions of Appendix S7, plus the additional as-
sumption that species 2 is exactly halfway between species 1 and 3: the trait distance between 1 and 2
(and 2 and 3) is 8, and the difference between 1 and 3 is 28. We then have the three-species effective
Lotka—Volterra model

3
ri=b;j— Y aym (S8.1)
k=1
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with parameters

by 1 « ﬁ
bi=b], ap=[a 1 «af, (S8.2)
b3 ﬁ a 1

where 8 < a < 1. To obtain the invasion growth rates, we first calculate the resident equilibrium
abundances by setting the per capita growth rates and the abundance of the invading species in Eq. S8.1
to zero:

by —ab by —Bb by —ab
e R G N B2l (58.3)
w—1 b3—06b2 =2 b3—ﬁb1 =3 bz—abl ’
S e ey R 2
The invasion growth rates are
rlzbl—anzfl—ﬁn?l, rgzbg—an“fd—an;*z, r3:b3—an§73—ﬁn’f73. (S8.4)

The three limiting factors in this model are the three densities. We choose n, as our baseline for
decomposing the invasion rates into stabilization and competitive advantage terms, for reasons of
symmetry (the same result is obtained by any other choice, though in a more complicated way). The ¢;
are then given by aj;, s0 ¢y = a, ¢ =1, and ¢3 = a.

Our goal with this model is to show that species may not coexist even if there are no competitive
advantages. Therefore, we decompose the scaled invasion growth rates as r;/¢; = f; + A and focus on
the special case where f; = f, = f3 = 0. The requirement f; = f3 translates to r; /¢; = r3 /@3, which,
due to ¢ = ¢3 = a, simplifies to r; = r3. This can only hold for an arbitrary choice of a and f if
by =by,n} ' =n33, and ny = n3. Imposing these constraints on Eq. $8.3 and substituting the
resulting equilibrium abundance expressions into Eq. S8.4, we obtain

1-B 20

rlzrgzm(bl—abz), r2:b2—1+[3

by. (S8.5)

Further requiring f; = f» means ry/¢, = r1/¢;, or ry = r;/a. Using Eq. S8.5, this imposes the
following relation between b, and b| = bs:

14202 —2a* — B?
a(l1+B)2—a2—B)

Intuitively, the reason the middle species needs a different (larger) intrinsic growth rate than the two
edge species is that the middle species experiences more competition by being sandwiched between
two other species which do not experience competition from one of their sides (central niche effect;
Stump 2017). We now have f; = f, = fs =0and r; /¢, = r2/¢, = r3/¢3 = A. Substituting Eq. S8.6
into Eq. S8.5 and simplifying, we find that each species has a scaled growth rate of

Y gy (=B1+B-20%)
0, a(l+B)2— a2~ B)

Because there are no competitive advantages, the requirement for coexistence is simply A > 0.
But this can only happen for certain combinations of o and f3, as we can see by studying the signs of

by = b (S8.6)

(S8.7)
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the different terms in Eq. S8.7. We can assume b; > 0, as otherwise coexistence would be trivially
impossible. Of the remaining terms, the denominator is positive for any 8 < o < 1, as is the factor
1 — B3 in the numerator. The sign of A must then be determined by the remaining factor, 1 +  — 2o
But this may clearly be negative for a wide range of parameterizations satisfying § < a < 1, precluding
coexistence.

To proceed further in connecting this result to traits, we must specify the map between trait differ-
ences and interaction strength. Here we assume a;; = exp(—(9;;/ w)?) for the interaction coefficient
between species i and j (Figure Sla), where §;; is the trait distance between the two species, w is the
characteristic scale of interaction—defining what constitutes small versus large trait differences—and
0 is a shape parameter controlling how platykurtic (“boxy”) the function is (Herndndez-Garcfia et al.
2009, Pigolotti et al. 2010, Barabds et al. 2012b). As already pointed out in Appendix S7, biologically
realistic interaction coefficients must be smooth functions of trait difference (Adler and Mosquera
2000, D’ Andrea et al. 2013, Barabds et al. 2013a), imposing 6 > 2. With a trait difference 6 between
adjacent species, this gives us a = exp(—(8/w)?) and B = exp(—(25/w)?). The sign of A then reads

sign(A) = sign(1 + B — 2a2) = sign [1 +exp(— (28 /w)?) — 2exp(—2(8 /w)e)] . (S8.8)

For the special case of 6 = 2, this is positive for any d > 0. However, for all 8 > 2, it imposes a
minimum 6 below which A is negative and coexistence is lost (Figure S1b). In the limit 6 — o, where
species with trait difference 6 < w compete neutrally (all intra- and interspecific coefficients equal
to one) and those with 6 > w do not compete at all, the limit for coexistence naturally converges to
0/w =1 (Figure Slc).

In summary, coexistence is prevented here because, although by construction there are no compet-
itive advantages, the stabilization A is negative for sufficiently small trait differences.

b
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Figure S1: a. The form of the competition coefficient as a function of the scaled trait distance 6 /w between
two species, for various values of the kernel exponent 6. The qualitative shape of the function is unaffected, but
the transition from strong to weak interactions gets more abrupt as 6 increases. b. The stabilization term A for
the three-species community, assuming no competitive advantages across the species. Stabilization is shown
as a function of the nearest-neighbor scaled trait distance 8 /w, for different values of 6. c¢. The minimum trait
distance required for stable coexistence, as a function of 8. With the exception of 0 = 2, this is always a positive
distance, imposing a limit to species similarity.
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