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Abstract

The community matrix measures the direct effect of species on each other in an ecological
community. It can be used to determine whether a system is stable (returns to equilibrium
after small perturbations of the population abundances), reactive (perturbations are initially
amplified before damping out), and to determine the response of any individual species to
perturbations of environmental parameters. However, several studies show that small errors in
estimating the entries of the community matrix translate into large errors in predicting individual
species responses. Here we ask if there are properties of complex communities one can still
predict using only a crude, order-of-magnitude estimate of the community matrix entries. Using
empirical data, randomly generated community matrices, and those generated by the Allometric
Trophic Network model, we show that the stability and reactivity properties of systems can
be predicted with good accuracy. We also provide theoretical insight into when and why our
crude approximations are expected to yield an accurate description of communities. Our results
indicate that even rough estimates of interaction strengths can be useful for assessing global
properties of large systems.

Keywords: community matrix, eigenvalues, pseudospectrum, random matrix, robustness,
stability

1 Introduction

Ecological communities can be modeled through a set of deterministic differential equations keeping
track of population growth as a function of the (biotic and abiotic) environment. One central
question in the study of communities is their stability (May 1973): when perturbing the population
abundances slightly, does the community tend to return to its original state? This question naturally
follows from the fact that, in nature, populations undergo constant perturbations, which they have
to withstand to avoid extinction. Mathematically, a community equilibrium is locally stable if the
Jacobian matrix, evaluated at that equilibrium, has eigenvalues with all negative real parts.



The Jacobian evaluated at an equilibrium point is called the community matrix (Levins 1968,
May 1973), whose (i, j)th entry measures the change in the total population growth rate of species i
in response to a (small) change in species j’s abundance, in units of inverse time. This matrix has
many useful properties in addition to determining local stability. For instance, a stable equilibrium
is reactive (Neubert and Caswell 1997, Tang and Allesina 2014) if perturbations, before damping,
are initially amplified in a transient manner. Reactivity is measured by the leading eigenvalue of
the Hermitian part of the community matrix, with positive values signaling reactive systems. In
addition, the inverse community matrix can be used to determine the response of any species in the
community to perturbations of the environment (i.e., not the abundances) via a community-wide
sensitivity formula (Levins 1974, Bender et al. 1984, Yodzis 1988, Meszéna et al. 2006, Aufderheide
et al. 2013, Barabas et al. 2014).

However, studies have revealed (Yodzis 1988, 2000, Dambacher et al. 2002, Novak et al. 2011)
that even small uncertainties in estimating the entries of the community matrix translate into
large errors of prediction. The problem is that small perturbations to the matrix can have large
effects on the inverse matrix, to the point where even the directionality of the species’ responses to
environmental perturbations are predicted erroneously. Since the eigenvalues of the inverse matrix
are the inverses of the eigenvalues, we do not expect the inverse matrix to be ill-behaved as long
as all eigenvalues are far from the origin of the complex plane. But problems arise when some
eigenvalues are close to zero: then the slightest error in measurement may lead to qualitatively
different outcomes. Suppose the leading eigenvalue of a community matrix is (—0.01 £0.02) /year;
its inverse is then either smaller than —33.3 years, or larger than 100 years. A slight measurement
error can make the difference in whether the inverse matrix is deemed to have a large negative
or a large positive eigenvalue. We do not know for certain whether community matrices of large
natural systems possess eigenvalues that are close to zero, but a heuristic argument can be made
that this is indeed the case based on the shape of the species-abundance curve (McGill et al. 2007),
which shows that rare species are always overrepresented in natural communities. Since even small
perturbations of the abundances could knock such rare species to extinction, the system must lie
close to a transcritical bifurcation, meaning that some eigenvalues are necessarily very close to zero.

In large systems, it is already logistically impossible to measure every pairwise interaction (a
community of 100 species with connectance 0.1 has 1000), let alone doing so with high accuracy.
This fact, combined with the above argument, seems to imply the futility of relying on the “inverse
problem” to obtain species’ responses to environmental perturbations. What one can do, however—
and this is the focus of our work—is to use imperfect information about the system to estimate
properties which do not rely on inverting the community matrix, such as stability and reactivity. By
avoiding the matrix inversion, small errors no longer translate into large ones, and so even crude
estimates may provide useful information about a system.

Here we ask how well one can approximate the eigenvalue distribution of community matrices
based on only an order-of-magnitude knowledge of interaction coefficients. Even though accurate
measurement of all matrix entries is impossible, ecologists with extensive field experience can
frequently rely on their intuition to classify interactions as “strong” or “weak”. We assume that
the magnitude of the strongest interactions are known (reasoning that, since they are strong, they



are the most likely to be noticed and possibly the easiest to measure), and coarse-grain each matrix
entry into bins, based on their relative magnitudes in comparison to the strongest interactions. We
show that the eigenvalue structure of complex community matrices can be captured well using this
procedure, and therefore such qualitative information can be used to approximate system properties
not relying on the inverse.

Below, after describing how we construct approximate matrices using imperfect data, we show
how this procedure works on empirical datasets. We then apply the procedure to matrices that
are randomly generated, as well as those generated by the Allometric Trophic Network model
(Berlow et al. 2009). We then go on to give a theoretical justification to our method, building
on the theory of random matrices (Bai and Silverstein 2009) and pseudospectra (Trefethen and
Embree 2005). We end by discussing the limitations of our approach and its relevance for the classic
stability-complexity debate in community ecology.

2 Constructing approximate matrices

We are given a community matrix A, and we would like to know its eigenvalues, but information on
A’s entries is limited. Quantitatively, we assume we know only the magnitudes of the largest positive
and negative entry (denoted by p and n, respectively), and the zero entries of A, i.e., we know which
interactions are absent. Apart from this quantitative information, we assume a qualitative knowledge
of all other matrix entries: based on expert opinion or other indirect information, we know whether
a given entry is strong or weak compared to n and p. Based on this, we assign numerical bins into
which the entries of A will be lumped. Let B denote this binned approximation to A. We ask how
well the spectrum of B approximates that of A.

We thus need to specify a binning procedure. First, we choose a number of bins. We then assign
numerical values to these bins. Finally, each entry of B is set to the value of the bin closest to the
value of the corresponding entry in A. For a given binning, we use the notation

(X1, X2, v vy X)),

meaning that the first bin goes from x; to halfway between x; and x;, the second goes from halfway
between x; and x; to halfway between x; and x3, and so on, until the last bin going from halfway
between x;_; and x; to x;. As an example, consider the matrix

7.8 6.7 37 -—-12
=75 26 =74 0
-10.0 —-69 04 58

0 0 10.0 —-8.7

A:



Its strongest negative entry is n = —10; its strongest positive entry is p = 10. If we now decide to
construct B using three bins with values (n, 0, p), we get

7.8 6.7 37 -—-12 10 10 0 0

A =75 26 =74 0 - B-— -10 0 —-10 O
-100 —-69 04 58 -10 —-10 O 10
0 0 10.0 —-8.7 0 0 10 -10

In principle, the choice for the number of bins and their values is arbitrary. Here we consider the
following, more specific procedure. Let the number of bins be £ > 3 an odd integer. Let us specify a
binning resolution constant » whose powers help define the bins; in effect, b fixes the definition of
an order of magnitude. The k bins are then given by

(n,nb=', nb=2, ..., nb~ k=072 o pp=k=D/2 0 pp2, pb~ 1 p).

Using our previous example for A, we can bin A with k = 5 and binning resolution b = 10. Since
n= —10and p = 10, the bins are (—10, —1, 0, 1, 10):

7.8 6.7 37 -—-12 10 10 1 -1

A =75 26 =74 0 . p— -10 1 —-10 O
-10.0 —-69 04 58 -10 —-10 O 10
0 0 10.0 —-8.7 0 0 10 -10

Our scheme for binning matrix entries involves exponentially shrinking bin sizes. Any number
of other schemes may be implemented—e.g., linear binning, where adjacent bins are equally spaced.
The reason for choosing the exponential scheme is that there is both theoretical (Tang et al. 2014)
and empirical (Woodward et al. 2005) evidence that the interaction strengths in large ecological
networks follow a distribution close to lognormal. Therefore the exponential binning strategy is
expected to yield better resolution of the underlying data than a linear one. This is not to say
that different binning schemes are not better suited to different problems. However, regardless of
the problem at hand, one should make sure that the procedure does not depend on the particular
choice of units the matrix entries are expressed in, which means that the procedure should only be
sensitive to the relative magnitudes of the matrix entries, not their actual numerical values which are
unit-dependent. The exponential scheme obviously satisfies this requirement.

3 Exploratory analysis: some empirical datasets

We show the eigenvalues (red dots) of community matrices from nine different empirical interaction
webs in Fig. 1, parameterized using allometric scaling relationships (Tang et al. 2014). These
matrices were binned with b = 4, k = 7; the eigenvalues of the binned matrices (blue circles) are
also shown. The number of species in each web is indicated in the panel titles. To interpret the
eigenvalue distributions correctly, note the scale discrepancy between the real and imaginary axes.
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Figure 1: Eigenvalues of community matrices (red dots) and their binned counterparts (blue circles) from
nine different empirical interaction webs. Datasets used (left-right, top-bottom): Broadstone Stream, Baja
San Quintin, Carpinteria Salt Marsh, Estero de Punta Banda, Kongs Fjorden, Lough Hyne, Caribbean Reef,
Weddell Sea, and Ythan Estuary (see Tang et al. 2014 and references therein). The Kolmogorov-Smirnov
distance between the original and binned eigenvalue distributions are given in each panel (top right), as well
as the relative difference in the leading eigenvaules of the matrices and their Hermitian parts (bottom right).



The spectra of the binned matrices capture general features of the original ones, such as a larger
bulk of eigenvalues near the origin of the complex plane, and semicircular arcs composed of a
handful of eigenvalues protruding from this bulk towards the left half plane. More quantitatively,
one may consider the Kolmogorov-Smirnov distance (a number between 0 and 1, corresponding to
the maximum vertical distance between two empirical cumulative distribution functions) between
the original and binned matrices’ eigenvalue distributions as a measure of how well the distributions
approximate each other. Since the Kolmogorov-Smirnov distance is defined for univariate samples,
we consider the distance between the real and the imaginary parts of the eigenvalues separately.
Their numerical values are shown in the panel insets of Fig. 1 (top two lines).

From the point of view of local stability, the leading eigenvalue (that with the largest real part)
is of crucial importance: the sign of the real part of this eigenvalue determines whether the system is
stable (negative) or unstable (positive). We consider the difference between the leading eigenvalues
of the binned and original matrices to see how well it is captured. However, the raw difference
itself is not informative, since the numerical value of this eigenvalue difference simply depends
on the choice of units we measure the matrix entries in. A better question is how well the leading
eigenvalue of the original matrix is approximated compared to the total spread of the eigenvalues;
that is, can we say that the leading eigenvalue of the binned matrix is close to that of the original
one, compared to the total range of the real parts of all the eigenvalues of the original matrix?
These values are included in the panels under “D(Re)”. We can see that, for the datasets presented,
the binning approximation always errs on the conservative side, overestimating the actual leading
eigenvalue. This conservatism is due to the fact that our method of matrix binning include both
largest entries of the matrices as bins, and also the zero bin. The binning procedure will lump several
entries into these extreme bin values. Therefore the variance of the entries of the binned matrix
will in general exceed that of the original matrix, which leads to a higher variance in the eigenvalue
distribution as well.!

Note that none of the matrices in Fig. 1 are stable. This is because the empirical studies which
they are based on only document trophic links, with no data on self-interactions. Due to this lack
of information, we set all diagonal entries to zero. However, since the sum of the diagonal entries
of a matrix is also the sum of its eigenvalues, such matrices cannot be stable. Their instability is
therefore likely an artifact of our ignorance rather than an actual phenomenon. However, since we
are interested in the ability of binned matrices to approximate spectra (whether they are stable or
not), this lack of information is not a problem for us here.

Just as with stability, we can also examine reactivity, measured by the leading eigenvalue of
A’s Hermitian part H(A) = (A+A")/2; AT is the transpose of A. We therefore calculate H(A) and
H(B), and ask how well the leading eigenvalue of the latter approximates that of the former in
comparison with the total spread of the eigenvalues of H(A). The results, for the empirical webs of
Fig. 1, are shown under “D(H)”.

ILet A be a normalized matrix, with entries having zero mean and unit variance. Denote its eigenvalues by A4 and their
variance by Var(44). Now let B = oA with & > 0 a scaling constant. B’s entries then have zero mean and variance o?, its
eigenvalues are Ap = a4, and their variance is Var(Az) = Var(ad,) = a?Var(1,4 ). In other words, increasing/decreasing
the variance of the matrix entries increases/decreases the variance of the eigenvalues as well.



Let us highlight some of the general conclusions from these motivating examples. First, the
eigenvalue distributions of the original and binned matrices roughly overlap: their means and
variances are very similar in both the real and imaginary directions. Second, some of the finer
structure of the eigenvalues distributions is also captured: more eigenvalues near the origin, and a few
ones protruding in arcs toward the left half plane. Third, despite these features, the match between
the actual and predicted values for stability and reactivity is not always very close—cautioning
that the approximation could fail to capture specific numerical estimates for these properties. The
method therefore reveals the general features of the system, and gives a rough idea of the quantitative
details.

4 Randomly generated interaction matrices

Here we test the binning procedure on randomly generated interaction matrices. For each matrix
we first fixed the number of species S and the connectance C. We then generated two uniform
random numbers between 0 and 1 to determine the types of all nonzero interactions. The first
number is the fraction of trophic interactions, the second the fraction of mutualistic ones out of
those that were nontrophic (the rest of the interactions were designated competitive). For each of
the three interaction types there was an associated probability distribution from which the matrix
entries pertaining to the interaction type in question were drawn. The procedure for generating the
probability distribution was the same in all cases: first, the shape of the probability distribution was
determined: either lognormal or Gamma. (We did this to check the robustness of our results to the
choice of the underlying distribution. The results are indeed robust; see Supporting Information,
Figs. S23-S26). Second, the mean and standard deviation of the distribution were uniformly sampled:
for the mean, from [0.1, 10], and for the standard deviation, from [1, 10]. For the trophic interactions,
a random conversion efficiency was uniformly sampled from [0.05, 0.2] to take into account the
limited energy flow between trophic levels. To set the diagonal of the matrix, we sampled each
diagonal entry from either a lognormal or a Gamma distribution, times —1 to keep the diagonal
entries negative. The mean and standard deviation of the distribution were randomly drawn as in the
offdiagonal case. See the Supporting Information for a more detailed breakdown of our method for
generating these matrices.

We repeated the parameterization for four different values of the species richness S (50, 100,
250, and 500) and of the connectance C (0.1, 0.25, 0.5, and 1), in all possible combinations. Then,
300 replicates of all cases were generated. All resulting matrices were binned, based on all possible
combinations of the following three variables. First, the number of bins was chosen to be either 3, 5,
7, or 9. Second, the binning resolution was set to 2, 4, 6, 10, and 14. Third, we took into account
the effect of accidentally misclassifying matrix entries. In empirical situations, it seems likely
that strong interactions may accidentally be deemed weak (or vice versa), given the insufficient,
qualitative information one uses to generate approximate matrices. We therefore explored what
happens when we deliberately misclassify some fraction of the matrix entries. In doing so, we
assumed that zero interaction strengths do not get misclassified (absent interactions cannot ever



be observed, and so will not be accidentally classified as present), and that the bin category of a
nonzero interaction can only move up or down one bin (a strong interaction may be misclassified as
weak, but not as zero). We used three rates of misclassification: 0%, 10%, and 20%. Our results
were not strongly affected by misclassification (Supporting Information, Figs. S1-S5). Here in the
main text we always show results with a 10% misclassification rate.

First, we explored how accurately the leading eigenvalue is captured depending on the number
of bins k, the binning resolution b, and the species richness S (Fig. 2). It is apparent that b = 4, 6 and
k=17, 9 yield the best results. For instance, 90% of all results with » = 4 and k = 7 have a difference
between rp and r4 less than 16% of o, the total spread of the real parts of A’s eigenvalues. Higher
values of k leading to better predictions was expected—the more bins we use, the more accurate the
predictions will be. Notice though that there are diminishing returns. In a sense this is fortunate,
because using more than 7-9 bins is probably not feasible in practice (seven bins means that, apart
from zero, we have a “strong”, a “medium”, and a “weak’ category both for positive and negative
interactions). The result that b ~ 4 is optimal concerns the “best” choice for the definition of an order
of magnitude. This suggests one should consider interactions sufficiently different if they differ by
a factor of about four. Importantly, this choice proves to be consistently the best through various
models and various metrics considered (see the next section and the Supporting Information).

Instead of the relative, quantitative measure of how well the leading eigenvalue is approximated,
we may also ask how often is it true that if a matrix A is stable, then its binned counterpart B is also
stable. Of most interest are those matrices whose leading eigenvalues lie close to the imaginary
axis, since in these cases a small perturbation to the spectrum may in principle change their stability
properties. Once again, being “close” to the imaginary axis should not be measured on an absolute
scale, since any given distance is unit-dependent, and the binning procedure is itself scale-invariant
(Section 2). The relevant question is whether the leading eigenvalue is close to the imaginary axis
compared to the total spread of all eigenvalues; i.e., whether |r4|/0y4 is small. The result (Supporting
Information, Figs. S19-S20) depends on b and k; for example, when using only three bins, one is
more likely to misjudge stability than not. However, for b = 4 and k = 7, of those results for which
|ra]/oa < 0.05, stability is accurately predicted in 90% of all cases. And, for |r4|/04 < 0.1, this
accuracy increases to 97%, after which it quickly approaches 100%, always increasing.

Similarly to the leading eigenvalue, one can also look at reactivity and how well it is predicted
(Supporting Information, Figs. S3-S5). Just as before, b = 4,6 and k = 7,9 provide the best
approximations, with more than 90% of all results falling within 23% of the total spread of the
eigenvalues of H(A), the Hermitian part of A (Supporting Information, Figs. S21-S22).

We also consider the effect of changing the connectance on the efficiency of binning—it turns
out however that this effect is neither systematic nor very strong (Supporting Information, Figs. S11-
S18).



1.0+

0.5+

0.0 1

-0.5-

-1.0-

1.0+

0.5

0.0

-05-

-1.0+

—
||

suig g

suig g

1.0+

(rB - rA)/ Oa

0.5+

0.0+

-0.5

-1.0-

T

'_

L1 1

suiq /

1.0 1

0.5+

0.0+

-05-

-1.0-

L L

Ll L

TTTT

T

e

Figure 2: Box plots of how the leading eigenvalues of randomly generated community matrices A are
captured by those of their binned counterparts B. Interpretation of the box plots: median (lines), 5% to 95%
quantiles (boxes; note that they encompass 90% instead of the usual 50% of the data), and ranges (whiskers).
Each matrix is binned with a 10% misclassification rate. Rows correspond to different values of the binning
resolution; columns to different numbers of bins. The data in each panel are separated based on species
richness. Panel ordinates show the difference between the leading eigenvalue r4 of the original and rp of the

1 1 1 1 L I L L 1
50 100250500 50 100250500 50 100250500 50 100250500 50 100 250 500

Number of species

binned matrices relative to oy, the total range of the real parts of the original matrix’s eigenvalues.

suig 6



5 The Allometric Trophic Network

The previous section explored the effects of matrix binning on randomly generated interaction ma-
trices. Here we consider a mechanistic model of multispecies communities, the Allometric Trophic
Network (Berlow et al. 2009). In this model there are a number of noninteracting abiotic resources
(here we assume there are two), primary producers utilizing those resources, and consumers eating
either the producers or other consumers. The feeding network is generated using the niche model
(Williams and Martinez 2000). Consumers interact with their resources via generalized functional
responses, which may include consumer interference. These interaction terms are functions of the
organisms’ average body masses, calculated based on species’ trophic levels and simple allometric
relationships.

We generated 10,000 different communities using the Allometric Trophic Network model. In
each simulation, we started out from a food web generated by the niche model, with 50 initial species
whose abundances were uniformly distributed between 0.05 and 0.2. We followed the methodology
described in Berlow et al. (2009) in every aspect to parameterize the model, except in choosing the
Hill exponents for the trophic interactions: instead of randomly generating it for every interaction,
we assumed it had the constant value of 2. This was done to make the system converge to a fixed
point instead of a limit cycle or chaotic attractor, which is important because we are interested in
predicting local asymptotic stability (indeed, in our simulations we only ever observed convergence
to a fixed point). The model was run until equilibrium was reached, at which point we calculated
the Jacobian to obtain the matrix A (see the Supporting Information for a detailed description of
our methods). Fig. 3a shows a spectrum generated by the procedure, along with that of its binned
counterpart (b = 6, k = 7). In the particular simulation shown, 24 species and both abiotic resources
survived to stably coexist out of the initial 50 species and two resources. The number of species
plus resources persisting at equilibrium was variable between runs, and approximately normally
distributed with mean 13.6 and standard deviation 3.0.

The matrices were subsequently binned with the binning resolution b running through 2, 4, 6,
10, and 14; the number of bins k taking on the values 3, 5, 7, and 9, and the rate of misclassification
being either 0%, 10%, or 20%. Since the number of species one ends up with is highly variable in
this model, we do not factor the results based on the number of species. Except for the case with 3
bins, the leading eigenvalue is captured well (Fig. 4), with 90% of all other cases having a relative
error less than 13%, and in some cases less than 6% (e.g., for b = 4, k = 7). Similarly, reactivity
(Supporting Information, Fig. S8-S10) is captured with relative error less than 12% in 90% of all
cases with b = 4, k =7, and misclassification rate 10%.

6 Theoretical underpinning

Here we connect the matrix binning procedure with more rigorous mathematical concepts, to give
a theoretical underpinning to why and when the method is supposed to work. We employ two
arguments, one based on the theory of random matrices, the other on the concept of pseudospectra.
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Figure 3: Spectra of various matrices (red dots) and their binned counterparts (blue circles). Panel (a):
Jacobian matrix obtained at a stable equilibrium of one particular run of the Allometric Trophic Network
model, binned with binning resolution » = 6 and k = 7 bins. Panel (b): Random matrix with independent
uniformly distributed entries between —1 and 1. It is binned with three bins (—1, 0, 1). Panel (c): the same
random matrix, but binned with five bins (—1, —0.5, 0, 0.5, 1).

6.1 Random matrices

Although empirical interaction webs are manifestly nor random, an intuition for why the matrix
binning procedure works may be gained by connecting it with random matrix theory (Bai and
Silverstein 2009). There are several results in the theory of random matrices concerning the
distribution of matrix eigenvalues in the complex plane, such as the circular (Girko 1984, Tao et al.
2010) and elliptic (Sommers et al. 1998) laws, which have found ecological applications as well
(Allesina and Tang 2012, Tang et al. 2014). Here we only consider the simplest version of the circular
law; more complexity can be incorporated analogously (see Supporting Information). Suppose
the entries of the S x § matrix A are drawn independently from the same underlying probability
distribution p4 (x), which has mean zero and variance V4. Then the law states that for S large, the
eigenvalues are uniformly distributed in a circle of radius 1/SVj in the complex plane, centered at
the origin.

Note that the circle’s radius only depends on the variance of p4(x) but not its shape. This
important property (Tao et al. 2010) means that two completely different underlying probability
distributions will lead to the same eigenvalue distribution as long as their mean is zero and their
variances are equal (in the limit of S going to infinity, the distributions would converge to be exactly
the same; for S large but finite, there are slight but negligible differences). Even if the variances are
not equal, the only difference between the eigenvalue distributions will be in the radii of the circles
within which the eigenvalues are found.
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Figure 4: Box plots of how the leading eigenvalues of community matrices A are captured by their binned
counterparts B, where the As are generated by the Allometric Trophic Network model. The figure is organized
just like Fig. 2, except the data in the panels are not separated based on species richness.
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The key idea concerning matrix binning is as follows. Consider a random matrix A whose entries
are drawn from some distribution p4(x). We create its binned counterpart B. But the binned matrix
B is just another random matrix with a different underlying probability distribution: we essentially
replace the original p, (x) with a discrete distribution pg(x), one which we can calculate from p4 (x)
and the bin positions. We will then know the eigenvalue distribution of B as well, since that only
depends on pp(x)’s variance V. The spectra of A and B may then be compared analytically.

As an example, let the entries of A come from the uniform distribution p4 (x) = U[—1, 1], which
has variance V4 = 1/3. Let us bin A with three bins (—1, 0, 1). The probability, on average, of any
one entry being lumped into the —1 or 1 bins is 1/4, while the probability of being lumped into
the 0 bin is 1/2, defining the discrete distribution pg(x). This distribution has variance Vg = 1/2.
The eigenvalues of A are therefore uniformly distributed in a circle of radius r4 = m and those
of B in a circle of radius rg = m (Fig. 3b). If we now ask how well the leading eigenvalue is
approximated, we first note that they are simply given by r4 and rp (since the eigenvalues fall in
a circle). We therefore take the ratio of the two radii to assess the goodness of the approximation:
rg/ra = +/3/2 ~ 1.22. The binned matrix overestimates the leading eigenvalue by this factor.

One could repeat the analysis with a more refined binning scheme, for instance with k =5 and
b =2. We then have five bins (—1, —0.5, 0, 0.5, 1) instead of the original three, leading to V3 =3/8
(see Supporting Information). Then the ratio of the circles’ radii (and that of the leading eigenvalues)
isrg/ra=+/Vg/Va = \/9/78 ~ 1.06, a near-perfect match brought about by the refinement of the
binning resolution (Fig. 3c).

In summary, certain classes of random matrices allow for a simple analytical evaluation of
the effects of matrix binning. Although real-world matrices are not going to conform to true
random matrices exactly, there are nevertheless good reasons to make use of them anyway. Most
importantly, random matrix theory serves as a theoretically well-understood benchmark, a reference
model, which, when not fitting real-world data, reveals properties of the empirical system that are
causing the departure from the random expectation, thus facilitating a better understanding of the
system. Quite apart from this justification, random matrix theory actually does have some success in
interpreting empirical data as well (Tang et al. 2014), suggesting its use may prove more than purely
theoretical.

6.2 Pseudospectra

The spectrum of a matrix A is the set of complex numbers that are eigenvalues of A. In contrast, its
e-pseudospectrum (Trefethen and Embree 2005) is the set of complex numbers that are eigenvalues
of all possible perturbed matrices A + P, with ||P|| < & (the matrix norm ||P|| is defined as the
square root of the largest eigenvalue of P*P, where P* is the conjugate transpose of P). Whereas the
spectrum is composed of discrete points in the complex plane, the €-pseudospectrum comprises of
the union of regions of various sizes around the original eigenvalues. See the Supporting Information
for an algorithm to compute pseudospectral regions.

An important result (Trefethen and Embree 2005, Theorem 2.2) states that the £-pseudospectrum
of normal matrices (i.e., matrices A for which A*A = AA™) is the union of circular disks of radius
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€ around A’s unperturbed eigenvalues. Moreover, such matrices have the smallest possible pseu-
dospectra. Any deviation from normality will increase the size of this set, with strongly nonnormal
matrices potentially having very large pseudospectral regions even for small values of €.

Pseudospectra provide a rigorous and general measure of the effect of perturbations on the
eigenvalues of matrices. Importantly, the binning procedure can be thought of as applying a certain
perturbation P to the underlying community matrix A, with A 4+ P = B, where B is the binned matrix.
The pseudospectrum reveals how sensitively the eigenvalues respond to the perturbation induced by
binning. In Fig. 5 the blue regions show the £-pseudospectrum for each of the nine empirical webs
of Fig. 1, with € = || P|| being the appropriate perturbation norm for each web; the red dots are the
unperturbed eigenvalues of A.

Pseudospectra measure the union of the effects of all possible perturbations of a given norm,
which is why the blue regions are much wider than the positions of the binned eigenvalues on Fig. 1
would warrant them to be. Importantly, since normal matrices are the least sensitive to perturbations,
the comparison of the actual pseudospectrum with the smaller one that would have been obtained if
the matrix had been normal carries useful information: pseudospectral regions much larger than the
one obtained under the assumption of normality signal a matrix whose spectrum is oversensitive
to perturbing its entries. The red regions in Fig. 5 were computed as the union of disks of radius
€ =||P||, i.e., it is what the pseudospectrum would look like if the matrices were in fact normal.
Since the blue regions barely exceed the red ones, the empirical matrices are “almost normal” and
therefore their spectra are not overly sensitive to perturbations of their entries.

Calculating pseudospectra is straightforward but computationally expensive. In the Supporting
Information we therefore introduce a much simpler metric, the scaled departure from normality
depn(A), which characterizes matrix sensitivity with a single number such that depn(A) < 1 guaran-
tees low sensitivity to perturbations. The value of depn(A) for each empirical matrix is reported in
the panel titles of Fig. 5. All are significantly lower than one, implying their spectra are not sensitive
to perturbations—in line with what we see on their pseudospectra.

7 Discussion

Our results show that certain global community properties, such as stability (May 1973) and
reactivity (Neubert and Caswell 1997, Tang and Allesina 2014), can be predicted using crude, order-
of-magnitude estimates of community matrix entries. These properties depend, broadly speaking, on
the distribution of eigenvalues (stability depends only on the leading eigenvalue; reactivity on their
whole ensemble), which was reasonably captured by the crude approximation. We gave theoretical
justification to when and why this would be so, one based on the theory of random matrices, the
other on the concept of pseudospectra. To check the robustness of our method, we applied it to three
very different scenarios: empirical interaction webs parameterized via allometric relationships (Tang
et al. 2014), randomly generated matrices, and those generated by the Allometric Trophic Network
model (Berlow et al. 2009). Though the degree to which the method produced accurate results was
situation-dependent, on the whole, it was able to make reliable predictions in each of these cases.
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This predictability appears to be at variance with earlier work emphasizing that even small
errors in measuring the entries of the community matrix translate into large errors of prediction
(Yodzis 1988, 2000, Dambacher et al. 2002, Montoya et al. 2009, Novak et al. 2011, Aufderheide
et al. 2013). If the spectrum of the community matrix is well approximated, why would this be the
case? The answer, we believe, is that the response of species to press perturbations depends on the
inverse spectrum. Due to the preponderance of rare species in natural communities, such systems are
necessarily close to a transcritical bifurcation point (small perturbations of the abundances may drive
rare species extinct), implying that some eigenvalues are close to zero, making the inverse overly
sensitive to measurement errors. One may try to ignore the rare species from a community model,
reasoning that—since they are rare—their impact on the community is slight. But unfortunately,
due to the general shape of the species-abundance curve (McGill et al. 2007), there is no natural
cutoff point for doing that. Therefore, one should try to approximate properties that do not depend
on inverting the community matrix.

One property we have not yet mentioned is feasibility, i.e., whether a community equilibrium
has all-positive species abundances. The stability or reactivity of unfeasible equilibria is of no
relevance. The reason we did not consider feasibility separately is that we treat the community
matrix as the linearization of some arbitrary nonlinear dynamics around some equilibrium state we
observe in nature. Its feasibility is therefore already guaranteed by the fact that we are observing the
system. Apart from this, note that feasibility is a property that depends on the inverse problem. For
instance, in a simple Lotka—Volterra model given by dn/df = no (b+ An) (where n is the vector of
densities, b the vector of intrinsic growth rates, A the matrix of interaction coefficients, and o denotes
the Hadamard or element-by-element product), the equilibrium densities are given by n = —A~!b.
Therefore, as discussed, our method is ill-suited for determining feasibility to begin with.

The accuracy of prediction was dependent on the number of bins & the entries were classified
into (fewer bins meant larger errors), and on the choice of the binning resolution b. In practice, a k
of seven to nine is probably the largest feasible number, since beyond this it becomes increasingly
difficult to assign weak interactions to correct bins. For the binning resolution b, we found that
values beyond 10 gave significantly worse results; b ~ 4 was usually optimal, but the sensitivity
of the results was not very great, and b = 2 and b = 6 performed similarly (Figs. 2, 4, S4, S9).
Interestingly, we have found b ~ 4 to perform the best regardless of whether we looked at the
empirical data, the randomly generated webs, or the Allometric Trophic Networks, and regardless
of whether we estimated stability or reactivity.

It may seem counterintuitive that the smallest value of b is not the most accurate in recovering
matrix properties. After all, the finer the resolution, the more accurate the binning. The reason is that,
because the number of bins is finite, this finer resolution only applies to larger matrix entries but not
necessarily to smaller ones. Consider the following example. A 100 x 100 matrix is generated by
uniformly sampling all but two of its entries from [—2, 2], and then setting the remaining two entries
to —8 and 8, respectively. If we bin this matrix with b = 2 and k = 5, the bins are (—8, —4, 0, 4, 8).
This means that all but the two outliers will be classified in the binned matrix as zero—a crude
estimate if there ever was one. However, for b = 4 the bins become (—8, —2, 0, 2, 8), resolving
the underlying data much better. In the end, the best binning is, of course, achieved for b — 0 and
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k — oo. Since this is not feasible in practice, one has to find the best compromise between a b that is
not too large but cannot be too small, and a k that is not too small but cannot be too large.

We also checked what happens if, in estimating the strongest interactions p and n, we use 10
empirically measured results and take their average. This way, a single very strong interaction that
dominates the system will not artificially distort the binning. However, the results proved insensitive
to doing this. The implication is that one should concentrate expensive and time-consuming
empirical effort wisely: very accurate measurement of a couple of interaction coefficients does not
improve predictive power much, while qualitative knowledge of many matrix entries does.

It is easy to think of scenarios in which the binning procedure produces grossly inaccurate
results. For instance, we have seen that matrices with depn(A) > 1 will have sensitive spectra,
therefore even relatively slight perturbations of their entries (e.g. introduced by binning) may lead to
large changes in their eigenvalue structure. We emphasize however that our metric for the scaled
departure from normality is merely a proxy for matrix sensitivity: the complete picture is gained by
looking at the full pseudospectrum.

But the binning procedure may be inaccurate even when the degree of nonnormality is low. If
the interaction strengths span too many orders of magnitude or are dominated by a small number of
very large matrix entries, then even a reasonably fine-grained binning structure may classify all but
the handful of very large entries as zero, leading to an eigenvalue distribution wildly different from
the actual one. The reason why low nonnormality does not matter in this case is that the perturbation
induced by binning is in fact very large. In practice however, whenever a few interactions dominate
the system, instead of binning, one should concentrate just on those very large entries to gain insight
into its workings. In other words, such systems naturally require different methods of analysis
than the one presented here, which works better for complex interaction structures where many
interactions together shape the properties of the system.

Our results also shed light on the classic stability-complexity debate from a slightly different
angle. The original “conventional wisdom” was that more complex systems (i.e., ones with more
species, higher variance in the strength of interactions, and higher connectance) would be more
stable in the face of perturbations (Begon et al. 2005, p. 586). This view was challenged by the
classic result of May (1972) which argued that, all else being equal, more complex systems have
a lower probability of being stable: the eigenvalues of the community matrices of more complex
systems are less likely to reside in the left half of the complex plane. Whether May’s argument
actually poses a true challenge to the conventional wisdom has been heavily debated (McCann 2000).
Our findings contribute to this debate by showing that large, complex systems, if not necessarily
more stable, are very robust against perturbations of the community matrix entries. The binning of a
matrix can be thought of as a structural perturbation of the system: we are altering the matrix entries,
changing the strength of interactions between species. Since, as we have seen, the binning of large
complex interaction matrices has only a small effect on the spectrum, the perturbation induced by
binning does not have a large effect on the system’s large-scale properties. For instance, the stability
and reactivity properties were unchanged. This means that if the system was actually stable, it was
likely to stay that way, and conversely, unstable systems remained unstable after the perturbation
induced by binning. In fact, the robustness interpretation of the stability-complexity debate is closer
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to its original formulation, where it was argued that the more pathways there are in an interaction
web, the less it matters if one of those links is lost, since other pathways will compensate for the
loss (MacArthur 1955, Elton 1958).

In summary, the results from approximating system properties using semiquantitative infor-
mation point in the direction of using such approximations in practice, where obtaining precise
quantitative information is hard, expensive, and time-consuming. The presented results show that
such crude parameterization of complex systems may still reveal important global system properties
of interest.
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Predicting global community properties
from uncertain estimates of interaction strengths

Supporting Information

Gyorgy Barabds & Stefano Allesina

Abstract

This Supporting Information presents a step-by-step description of our methodology for gener-
ating random interaction matrices and Allometric Trophic Networks (Section 1), shows further
results obtained from our simulations (Section 2), and gives extra details on the theoretical
background of matrix binning (Section 3). We also describe a simple algorithm for obtaining
the e-pseudospectral contour lines of any given matrix (Section 4). Finally, we derive a new
metric for assessing the degree of nonnormality of a matrix, which is useful in assessing how
sensitive its spectrum is expected to be to perturbing its entries (Section 5).
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1 More details on the simulation methods

1.1

Random interaction matrices

Here is a step-by-step breakdown of how we created our random interaction matrices.

1.

We first pick a species richness S and a connectance C (i.e., the fraction of nonzero interactions
in the matrix). In our simulations S was either 50, 100, 250, or 500, and C was chosen from
0.1,0.25,0.5, or 1.

. Consider the following procedure for generating a probability distribution. First pick a

distribution shape from two options: either lognormal or Gamma. Then determine the given
distribution’s mean by sampling it uniformly from [0.1, 10]. Finally, the standard deviation is
also sampled uniformly, from [1, 10].

Use this procedure to generate four separate probability distributions. Call the first one
“PredPrey” for predator-prey, the second one “Mut” for mutualism, the third “Comp” for
competition, and the last one “Diag” for diagonal.

How do we decide whether to pick a lognormal or a Gamma distribution? We actually repeated
every simulation with all 16 possible combinations of the distributions, with “PredPrey”,
“Mut”, “Comp”, and “Diag” all taking on both possible values, so nothing was left out.

Generate two random numbers, both of them sampled from [0, 1]. Call them C; and C,, (for
“trophic” and “mutualistic”).

Now generate an S x S matrix A of all zeros.

. Make a fraction G, C of the offdiagonal entries predator-prey, a fraction C,, C mutualistic,

and a fraction C(1 — C; — C,,) competitive (leave the rest of the 1 — C entries as zeros). The
predator-prey entries are drawn from “PredPrey”, the mutualistic ones from “Mut”, and the
competitive ones from “Comp”. For predator-prey interactions, make sure that the (i, j)th and
(j,i)th entries of A have the opposite sign; for mutualism, both should be positive, and for
competition, both negative.

Finally, the diagonal of the matrix is generated: fill out the diagonal entries by sampling from
the distribution “Diag”. Multiply the diagonal by —1 to make its entries negative.

Note: one could introduce a “diagonal connectance” Cy, i.e., the fraction of nonzero diagonal
entries. However, in our simulations we always set this to 1, so no diagonal entries were left
equal to zero.

Here is a function, written in R (R Development Core Team 2008), that we used to implement
this procedure:



This function generates a random interaction matrix with a prescribed
proportion of trophic, mutualistic, and competitive interactions.

H H R B

H*

S: number of species.

C: connectance (fraction of nonzero interactions); between 0 and 1.

ppred: probability that a nonzero link is predator-prey (between 0 and 1).

pcomp: probability that a nonzero non-predator-prey link is competitive
(between 0 and 1); the rest are mutualistic.

conv: conversion efficiency of predators; realistically between 0 and 1.

pdist, mdist, cdist: distribution from which trophic, mutualistic, and
competitive entries are drawn. Values: 1 = lognormal; 2 = Gamma.

mp, sp, mm, sm, mc, sc: sample means and standard deviations for each
distribution. The (mp, sp) are mean and std dev for predator-prey,
(mm, sm) are for mutualism, and (mc, sc) for competition.

Cd: fraction of diagonal entries that are nonzero.

ddist: distribution from which nonzero diagonal entries are drawn.
Values: 1 = lognormal; 2 = Gamma. Note: the diagonal entries are
never positive (i.e., the values drawn from the chosen distribution
get multiplied by -1).

md, sd: sample mean and standard deviation of nonzero diagonal entries.

HoH O HH O HHHHHHHHEHHHHR

An S-by-S matrix

H* H

#
GenerateMatrix <- function(S, C, ppred, pcomp, conv, pdist, mdist, cdist,
mp, sp, mm, sm, mc, sc, Cd, ddist, md, sd) {
# Generate adjacency matrix. Only upper triangle is generated; the
# diagonal and lower triangular part are discarded. Entry is 0 for
# absence and 1 for presence of interaction.
A <- matrix(sample(0:1, S*S, replace=TRUE, prob=c(1-C, C)), nrow=S, ncol=S)
A[lower.tri(A)] <- ©
diag(A) <- 0
# Now set trophic (= 1) vs nontrophic (= 2) interactions:
A <- A x matrix(sample(1:2, S*S, replace=TRUE, prob=c(ppred, 1l-ppred)),
nrow=S, ncol=S)

# Create predator-prey adjacency matrix AP

AP <- A

AP[AP!=1] <- 0 # discard nontrophic (= 2) interactions

AP <- AP x matrix(sign(rnorm(S%S)), nrow=S, ncol=S) # either -1 or 1
AP <- AP - t(AP)




# Create mutualistic and competitive adjacency matrices AM and AC

AM <- A

AM[AM!=2] <- ©

AM[AM==2] <- 1

AM <- AM * matrix(sample(c(-1, 1), SxS, replace=TRUE,
prob=c(pcomp, 1l-pcomp)), nrow=S, ncol=S)

AM <- AM + t(AM)

AC <- AM

AM[AM==(-1)] <- O # mutualism

AC[AC==1] <- 0 # competition

# Predator-prey values
AP[AP==1] <- conv x AP[AP==1] # conversion efficiencies
if (pdist==1) {
pl <- log(mp) - log(l + sp™2/mp"2)/2
p2 <- sqrt(log(l + sp™2/mp™2))
AP <- AP x matrix(rlnorm(SxS, pl, p2), nrow=S, ncol=S)
}
if (pdist==2) {
pl <- mp~2 / sp™2
p2 <- sp™2 / mp
AP <- AP * matrix(rgamma(S*S, shape=pl, scale=p2), nrow=S, ncol=S)

}

# Mutualism values
if (mdist==1) {
pl <- log(mm) - log(l + sm™2/mm"2)/2
p2 <- sqrt(log(l + sm™2/mm"~2))
AM <- AM x matrix(rlnorm(SxS, pl, p2), nrow=S, ncol=S)
}
if (mdist==2) {
pl <- mm*2 / sm"2
p2 <- sm™2 / mm
AM <- AM * matrix(rgamma(S*S, shape=pl, scale=p2), nrow=S, ncol=S)

}

# Competition values
if (cdist==1) {
pl <- log(mc) - log(l + sc™2/mc"2)/2
p2 <- sqrt(log(l + sc”2/mc"™2))
AC <- AC * matrix(rlnorm(S*S, pl, p2), nrow=S, ncol=S)
}
if (cdist==2) {
pl <- mc™2 / sc”2
p2 <- sc™2 / mc
AC <- AC * matrix(rgamma(S*S, shape=pl, scale=p2), nrow=S, ncol=S)




}

# Finally, create the diagonal of the matrix
diagvec <- sample(0:1, S, replace=TRUE, prob=c(1-Cd, Cd))
if (ddist==1) {
pl <- log(md) - log(l + sd"2/md"2)/2
p2 <- sqrt(log(l + sd~2/md"2))
diagvec <- diagvec * rlnorm(S, pl, p2)
}
if (ddist==2) {
pl <- md™2 / sd"2
p2 <- sd*2 / md
diagvec <- diagvec * rgamma(S, shape=pl, scale=p2)

}

# The sum of all components is the full interaction matrix
return(AP + AM + AC - diag(diagvec))

1.2 The Allometric Trophic Network model

To generate community matrices using the Allometric Trophic Network model, we followed the
equations and parameterization described by Berlow et al. (2009). First, a food web’s adjacency
matrix w;; is created using the niche model (Williams and Martinez 2000; see below), where w;; is
equal to 1 if species i eats species j and to 0 otherwise. The dynamical equations of the model read

dB; S S
o =i Gi(N1,N2) Bi —x;Bi+ Y wijx;yBiF;j— Y wjixjyB;Fji/ej, (1)
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where B; is the biomass of species i, r; is a nutrient uptake-dependent maximum growth rate,
Gi(N1,N,) is the growth achieved on the two nutrients N; and N, x; is a metabolic rate, y is
the maximum consumption rate of consumers relative to their metabolic rate, ¢;; is species i’s
assimilation efficiency when eating species j, and F;; is a generalized functional response given by
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In this functional response, @;; is the proportion of i’s maximum consumption rate targeted at
consuming j, By is a half-saturation density, % is an exponent determining the Holling type of the
functional response, and c is a predator interference parameter.




We assume there are two limiting nutrients Ny and N, which the primary producers can consume.
Their dynamics is given by

dn;
dr

s
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where N, is the concentration of nutrient i, D is a turnover rate, ¢;; is the content of nutrient 7 in the
biomass of species j, s; is nutrient i’s supply rate, and G;(N;,N,) is the same function that appeared
in Eq. (1). It is defined by

. N N>
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where “min” picks the smaller of the two arguments, and K;; is species j’s half saturation density
for nutrient i.
The parameters were assigned as follows.

1. S = 50 for the initial number of species.

2. Out of these 50, the number of basal species (primary producers) was sampled uniformly as
an integer from [2, 10]. In our ordering of species, they are the last ones, so if there are two
producers, they will be species 49 and 50.

3. The food web adjacency matrix w;; (equal to 1 if species i eats species j and to 0 otherwise)
is generated by the niche model (Williams and Martinez 2000), in the following way.

e Primary producers only consume nutrients, therefore w;; = 0 for all i that are primary
producers.

e Each consumer species i consumes a range of other species j, j+1,..., j+k, where the
starting index j is uniformly sampled between i+ 1 and S, and the length k is an integer
sampled from [—(S—i+1)/3, (S—i+1)/3].

e Note: if j+ k turns out to be larger than S, it is set equal to S, and if it turns out less than
i+1,itissettoi—+ 1.
4. w;=1/ Zf-:] w;; if the sum in the denominator is nonzero; otherwise, @;; = 0.
5. r; =1 for species i that are primary producers and 0 otherwise.
6. Determine the trophic level T of each species. Trophic level can be calculated by defining the
matrix A;; = w,-j/):f:1 wir and the vector u; = 1 (for all i); we then have T; = Zle (I—A)i_j]uj,

where [ is the S x S identity matrix and (/ —A)i—j1 is the (i, j)th entry of the inverse of the
matrix / —A.



7. Define a vector Z of predator-prey body mass ratios; its S entries are sampled from a lognormal
distribution with mean 10 and variance 100.

8. Define the vector of body masses. For predators, the body masses are given by the formula
M; = Zl.T"fl. For species that are not predators, the body masses are equal to 1.

9. Using this, the metabolic rates x; are calculated as x; = (a,/ a,)Ml-_O'ZS, where M, is species
i’s body mass, and (a,/a,) is equal to 0.138 for primary producers (i.e., species with trophic
level exactly equal to one), and to 0.314 otherwise.

10. Assimilation efficiencies: e;; = 0.45 if the trophic level of species i is exactly 2; otherwise,
€; = 0.85.

11. The K;; are uniformly and independently sampled from [0.1, 0.2].
12. ¢c;;=1and cp; =0.5forall i,y =8, By =0.5, D =0.25, h =2, and s; = 1 for both nutrients.

13. Initial conditions: all the B; and N; at ¢ = 0 are uniformly sampled from [0.05, 0.2].

With this parameterization, the model equations Eq. (1) can be integrated with any reputable
algorithm for solving systems of ordinary differential equations. We used the NDSolve routine
implemented in Mathematica (Wolfram Research Inc. 2014).

For each of our 10,000 random parameterizations, the equations were solved until they reached
a fixed point. At that point, extinct species were removed, and the Jacobian of the nonextinct part of
the system was evaluated, yielding the community matrix.

2 Further results on our simulated matrices

The first thing to note is the overall insensitivity of the binned community matrices to the misclassi-
fication rate (i.e., the probability per entry of the community matrix that it gets classified into an
incorrect bin). In the main text we always show results with 10% misclassification. Below, we
show the same results with 0% and 20% misclassification rates. For the leading eigenvalues (related
to stability), we have Figs. S1 and S2 for randomly generated matrices, and Figs. S6 and S7 for
Allometric Trophic Networks (Berlow et al. 2009). For the leading eigenvalues of the Hermitian
parts (related to reactivity), we have Figs. S3-S5 (randomly generated matrices) and Figs. S8-S10
(Allometric Trophic Networks); here the results with 10% misclassification rate are also included, as
these were referred to but not shown in the main text. As can be seen, the sensitivity to an increased
misclassification rate is small, though in general it does lead to lower overall prediction accuracy.

We also looked at the effects of connectance on prediction accuracy, both for stability and
reactivity (Figs. S11-S18); the effects, however, do not appear systematic. For instance, for binning
constant » = 4 and number of bins kK = 7, increasing connectance improves accuracy when the
number of species is S = 50, but leads to worse accuracy for § = 500. This trend is apparent both in
the case of stability (Figs. S11, S14) and of reactivity (Figs. S15, S18).



For matrices whose leading eigenvalues are close to the imaginary axis relative to the total
spread of the eigenvalues, stability may be incorrectly predicted even if the leading eigenvalue of
the binned matrix is not very different from that of the original one. To see how often this would
happen, we first take all those matrices for which |r4|/04 < 0.03, i.e., the magnitude of the leading
eigenvalue is less than one twentieth of the total spread of the real parts of all the eigenvalues. The
result depends heavily on the binning resolution b, and especially on the number of bins k (Fig. S19).
For k = 3 (3 bins), stability is more likely to be misclassified than correctly predicted. However, for
b >4 and k > 5, stability is correctly predicted in the majority of cases (for instance, exactly 90%
of the time when b = 4, k = 7). If we are more inclusive and consider all those matrices for which
|ra]/0a < 0.1, this number goes up to 97% (Fig. S20).

The same can be done with reactivity (Figs. S21, S22), where we look at the eigenvalues of
the Hermitian parts H(A), H(B) of the original and binned matrices A and B. For k = 7 bins
and binning resolution » = 4, reactivity is correctly predicted 92% of the time for matrices with
7t (a)|/ Or(a) < 0.05, and 99.4% of the time for matrices with [rg(4)| /O (4) < 0.1.

Fmally, we show that our results do not depend strongly on the partlcular form of the probability
distribution from which the entries of the random matrices are drawn. We get the same qualitative
results if we draw the entries from a lognormal distribution as if we draw them from a Gamma
distribution, both for stability (Figs. S23, S24) and for reactivity (Figs. S25, S26).

3 Random matrices

Here we describe in general how random matrices are binned when their entries are drawn inde-
pendently from the same underlying probability distribution p4(x). Imagine we are given a binning
scheme with k bins whose values are (xj, x2,..., x¢). The binned distribution pg(x) is then given by

k
= Y wib(x—x), 5)
i=1

where 8 (x — x;) is the Dirac delta function (which can be though of as a normal distribution with
mean x; and zero variance), and w; is the probability that a given matrix entry will get classified into
the ith bin; Zi-;l w; = 1. This distribution is well-normalized, and its mth moment u,, has a very
simple form:

U = +mx"’pzs dx = Zwl/ X" (x—x;)dx = Zwl , (6)

where we used the property of the Dirac delta function that [7 f(x)&(x — x¢) dx = f(xo) for any
function f(x). The w; are calculated from py4 (x) using the criterion that each entry should be lumped
into the bin with the closest value. Let us define corresponding integration limits Qg, Qp,..., €,
with Qp = —oo, Q = +o0, and Q; = (x; +x;11)/2 for 1 <i < k. We then have

Q;
M—LHM@M- ™
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After the binning has been obtained, the eigenvalue distribution can be calculated based on the
circular law and its extensions (Ginibre 1965, Girko 1984, Tao et al. 2010, Allesina and Tang 2012).
If one is interested in the leading eigenvalue, it can be obtained (Tang et al. 2014) from the formula

r:max{\/W—Eer, (S—l)E+d}, ®)

where S is the number of rows/columns of the matrix, E is the expected value of ps(x), V is its
variance, and d is a possible constant that has been added to the diagonal of the matrix.

The example given in the main text involves the uniform distribution pa (x) = U[—1, 1], having
mean E4 = 0, variance V4 = 1/3, and d = 0. The leading eigenvalue r4 is therefore simply given
by \/SV4, or 1/S/3. We bin this matrix with three bins (—1, 0, 1). The probability of a given
x € U[—1,1] falling into the —1 or 1 bins is 1/4, while the probability of falling into the 0 bin is
1/2. We therefore have w; = 1/4, w, = 1/2, and w3 = 1/4. The binned distribution pp(x) therefore
reads

> S(x+1)+28(x)+8(x—1
pB(x):Zw,-S(x—xi): e+ 4(x)+ (x ) )
i=1
The mean of pp(x) is
oo 1 [t 1
EBZ/_ xpB(x)dx:Z/_ x[6(x+1)—|—25(x)+5(x—1)]dx:Z(1+2-0+(—1)):O,
(10
while its variance is
oo oo
Ve= [ G-Ea) pa(o)de= [ Ppalx)ar
- o (11)
—+oco
:i/,w x2[5(x+1)+26(x)+5(x—1)]dx:%(12+2-02+(71)2) :%.

The leading eigenvalue rg of the binned matrix is then given by Eq. (8), which in this case simplifies
to rg = 1/SVg = \/S/2. The ratio of r and ry is then

S/2 3
VS22 3 ;. (12)
rA S/3 2
The same calculation and comparison can be made with a different binning scheme involving
five bins (—1, —1/2, 0, 1/2, 1). Using Eq. (7), we obtain w; = (1, 2, 2, 2, 1)/8, therefore pp(x)
is given by

i) = SO DT 280 1/2) +28() +26(e— 1/2) 18— 1)

Ml.n

pB(x) =
i=1

The mean is again
o0
Ey= [ xpalx)ar=o0, (14)



but the variance now reads

vB—/f‘”( B pa)ar= [ Ppp(a)a

o (15)
8/ §(x-+1)+28(x-+1/2) +26(x) +28(x— 1/2) + §(x— 1)] dx = .

The new ratio of the leading eigenvalues, based on Eq. (8), is

/3578
s _ V358 19 1 oe. (16)

A \/S/3 8

All the above formulas assumed that the matrix entries were all independently drawn from the
same distribution. The same approach may in principle be extended to different types of random
matrices. For instance, the elliptic law (Sommers et al. 1998, Allesina and Tang 2012, Tang et al.
2014) concerns the eigenvalues of matrices where all symmetric pairs of entries (A;;,A ;) are
sampled from some bivariate probability distribution with identically distributed marginals and
correlation p. The eigenvalues are then uniformly distributed within an ellipse of horizontal and
vertical semi-axes v/SV (14 p) and v/SV (1 — p), respectively. The leading eigenvalue r is then
equal to

r:max{(1+p)\/ST/—E+d, (S—I)E—i—d}, 17)

where d is the mean of the diagonal entries, £ = AT] is the expected value of the offdiagonal entries,
V = Var (A;;) is their variance, and

AijAji — E? (18)
14

is the expected correlation between symmetric pairs of (offdiagonal) entries. To determine the ratio

of the leading eigenvalues of the original matrix A and the binned matrix B, one simply calculates

Ex, V4, ps and Ep, Vg, pp, applies Eq. (17) to obtain both r4 and rp, and calculates their ratio. There

is one difference in how pp(x,y) is calculated, however: the integrals in Eq. (7) now become double

integrals, going over both directions of the bivariate distribution pa (x,y).

p_

4 Calculating pseudospectral contour lines

There are several methods for computing the pseudospectra of matrices (Trefethen and Embree 2005,
chapters 39-44), each adapted to different situations. Here we only describe the simplest algorithm
(Trefethen and Embree 2005, p. 371), which we used to generate the pseudospectral contour plots of
the main text.

The e-pseudospectrum of a matrix A is defined as the set of complex numbers that are eigenvalues
of all possible perturbed matrices A + P with ||P|| < &, where the matrix norm || - || is defined
as ||P|| = \/Amax (P*P), with P* being the conjugate transpose of P, and Ay (P*P) the largest
eigenvalue of P*P. An equivalent definition uses the concept of singular values (the singular values
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of a matrix A are the square roots of the eigenvalues of A*A): the e-pseudospectrum of A is the
set of complex numbers z such that the smallest singular value of the matrix z/ — A is smaller than
€, where [ is the identity matrix (Trefethen and Embree 2005, pp. 16-17). The simplest way of
obtaining pseudospectra is to compute the smallest singular values of zI — A on a regular grid of
points in the complex plane and then visualize this information via a contour plot.

If the matrix to be analyzed is given by A, the grid consists of m points in both the real and
imaginary directions, and the starting and endpoints along the real and imaginary directions are
given, respectively, by reMin, reMax, imMin, and imMax, the following R code (R Development
Core Team 2008) computes the minimum singular values on the grid and stores them in the matrix
sigmin:

X <- seq(from=reMin, to=reMax, len=m)
y <- seq(from=imMin, to=imMax, len=m)
sigmin <- matrix(©, m, m)
for (k in 1:m) {
for (j in 1:m) {
sigmin[j,k] <- min(svd((x[k]l+y[]j]l*1i)*diag(ncol(A))-A, nu=0, nv=0)$d)
}
}

This information may then be visualized by, say, invoking the contour function. Note that there
are more efficient algorithms available; see the book by Trefethen and Embree (2005, p. 375) for
one that is much faster but still reasonably simple.

S Departure from normality

Despite the avaliability of algorithms for obtaining pseudospectral contour lines, the computation
itself can be quite time-intensive, especially when S is large and the resolution of the grid on
the complex plane is high. It would be good to have a way of assessing, before performing the
computations, whether one expects large or small pseudospectral regions. Since normal matrices
possess the smallest possible pseudospectra (Trefethen and Embree 2005, Theorem 2.2), a natural
way to see if the spectrum of a matrix would be sensitive to perturbations is to measure the matrix’s
departure from normality. Any such metric is bound to be approximate, because nonnormality is a
complex property that cannot be encompassed into a single number (Trefethen and Embree 2005,
p. 446). Nevertheless, such measures do provide a quick and useful way of checking whether we
expect a matrix to be oversensitive to perturbations.
One commonly used measure of the departure from normality (Henrici 1962, Lee 1996) is

19)




where A; and o; are the ith eigenvalue and singular value of A, respectively (singular values are
the square roots of the eigenvalues of A*A). This metric is equal to zero for normal matrices, and
can get arbitrarily large for highly nonnormal ones. As there is no upper limit to dep(A), it is not
immediately clear whether any given nonzero value of this metric should be considered large or
small.

One way of finding a point of comparison is to calculate dep(M) for a simple S x S random
matrix M, where each entry is drawn independently from the same distribution with mean zero
and variance V. The reason is that such matrices are known to possess only a very mild degree
of nonnormality, being fairly robust to perturbations of their entries (Edelman 1988). Any matrix
whose departure from normality is comparable to or smaller than that of the aforementioned random
matrix is therefore likely to possess a spectrum that does not change much in response to binning.
Note that the eigenvalue and singular value distributions of these random matrices do not depend on
the shape of the probability distribution from which their entries are drawn, merely its variance.

The departure from normality of the random matrix described above can be derived analytically.
The probability distribution ps(x) of their singular values follows

= —2yf1- 5 (20)
Palt) =T sV 48V

for 0 < x < 2+/SV and 0 otherwise (Marcenko and Pastur 1967). In turn, the probability distribution
of the absolute values of their eigenvalues p, (x), as a function of the distance x from the origin of

the complex plane, follows
2x

P =5 1)

for 0 < x < /SV and 0 otherwise (Tao et al. 2010, Allesina and Tang 2012).

Eq. (19) instructs us to sum the squared singular values and eigenvalues. We therefore transform
Po(x) and p; (x) by introducing the new variable y = x?, from which x = ,/y and |dx/dy| = (2,/7) -
The transformed probability distribution g4 (y) of singular values then reads

1 y
100 = o 0[5 = 1 2 -

for 0 <y <48V and 0 otherwise. In turn, the transformed probability distribution g (v) of the
absolute eigenvalues reads

f0) = 60| = g @

for 0 <y < SV and 0 otherwise.
We can now evaluate Eq. (19) by approximating the sums with integrals (this assumes S is large).
The sum of all the squared singluar values is equal to S times their mean:

2—g B dy=3S Ly J_ = S%v. 24
o = =
-Z ! /0 y8o(y)dy /o T\/SVy 48V 24

i=1
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The sum of the absolute squares of all eigenvalues is again S times their mean:

N% V
2]l|—5/1>@z )dy = S/‘ ydy—45< (25)

For a random matrix M, Eq. (19) then reads

(26)

We can now introduce a measure of the scaled departure from normality depn(A), comparing
the degree of nonnormality with that of a random matrix which is of the same size and its entries
are of the same variance as the original matrix. Take an S X § matrix A and determine the sample
variance V of all its entries. The metric then reads

dep(A)
S\/V/2
Whenever this metric is equal to one, the degree of nonnormality of A is that of a random matrix.

The following R function (R Development Core Team 2008) calculates this metric, given that
the sample variance of the entries of A is nonzero:

depn(A) = (27)

depn <- function(A) {
eA <- eigen(A, only.values=TRUE)$values
sA <- svd(A, nu=0, nv=0)$d
depA <- sqrt(sum(sA™2) - sum(abs(eA)"2))
S <- nrow(A)
V <- var(as.vector(A))
depRand <- Sxsqrt(V/2)
return(depA/depRand)

13




(rB - rA)/UA

Figure S1: Box plots of how the leading eigenvalues of randomly generated community matrices A are
captured by those of their binned counterparts B. Each matrix is binned with no misclassification. Rows
correspond to different values of the binning resolution b; columns to different numbers of bins k. The data in
each panel are separated based on the number of species. The ordinate of the panels shows the difference
between the leading eigenvalue 74 of the original and rp of the binned matrices relative to oy, the total range
of the real parts of the original matrix’s eigenvalues. Interpretation of the box plots: median (lines), 5%
to 95% quantiles (boxes; note that they encompass 90% instead of the usual 50% of the data), and ranges
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Figure S2: Box plots of how the leading eigenvalues of randomly generated community matrices A are
captured by those of their binned counterparts B. Each matrix is binned with a 20% misclassification rate.
Otherwise, the plot is organized just like Fig. S1.
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Figure S7: As Fig. S6, but with a 20% misclassification rate.
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Trophic Network model. Each matrix is binned with zero rate of misclassification.

21



1.0 1

0.5+

0.0+

-0.5-

-1.0+

suiqg g

1.0

0.5+

sulg §

(rB - rA)/GA

0'0_=% 0 T 3 || € T || T ]|
-0.5 1

-1.0+

suiq 2

1.0

05+ ‘

0.0+ T £ | ’ T T

-0.5-

-1.0-

Figure S9: As Fig. S8, but with a 10% misclassification rate.
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Figure S15: The effect of varying network connectance on the prediction accuracy of the leading eigenvalue
of the Hermitian part (related to reactivity). As Fig. S11, but the ordinate represents predictions of reactivity
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Figure S16: As Fig. S11, but with the number of species fixed at § = 100.
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Figure S19: The number of cases in which stability is correctly predicted, out of those matrices whose
leading eigenvalues have a magnitude less than one twentieth of the total spread of the real parts of all
eigenvalues: |r4|/04 < 0.05. Rows correspond to different values of the binning resolution b; columns to
different numbers of bins k. The rate of misclassification is 10%.
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Figure S20: As Fig. S19, but for all those matrices for which |r4|/0c4 < 0.1.
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Figure S21: As Fig. S19, but for reactivity instead of stability.
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Figure S22: As Fig. S20, but for reactivity instead of stability.
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